Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Iran J Pharm Res ; 17(2): 480-494, 2018.
Article in English | MEDLINE | ID: mdl-29881406

ABSTRACT

Co-delivery approach has been recommended to reduce the amount of each drug and to achieve the synergistic effect for cancer treatment. Curcumin (CUR) and sulforaphane (SF) have antitumor effects, but their application is limited because of their low water solubility and poor oral bioavailability. To improve the bioavailability and solubility of SF and CUR, we performed an innovative co-delivery of them with PEGylated gold coated Fe3O4 magnetic nanoparticles (PEGylated Fe3O4@Au NPs) to endorse SF and CUR maintenance as an effective and promising antitumor drugs. The structure of the synthesized nanocarriers evaluated by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, vibrating sample magnetometer, dynamic light scattering and Fourier transform infrared spectroscopy. The results revealed that the zeta potential of CUR and SF-loaded NPs were about -15.4 mV and the average sizes were 80.57 nm. They were monodispersed (polydispersity index = 0.161 ± 0.016) in water with high drug-loading capacity and stability. CUR and SF were encapsulated into NPs with loading capacity of 17.32 ± 0.023% and 16.74 ± 0.015% and the entrapment efficiency of 83.72 ± 0.14% and 81.20 ± 0.18% respectively. The in-vitro study of SF and CUR loaded PEGylated Fe3O4@Au NPs on human breast adenocarcinoma cell line (MCF-7) confirmed that cytotoxicity of SF and CUR can enhance when they are loaded on PEGylated Fe3O4@Au NPs in comparison to free SF and CUR. The results of real-time PCR and flow cytometry shown that this combination can increase therapeutic effects of SF and CUR by apoptosis and necrosis induction as well as inhibiting of migration in MCF-7 cell line.

2.
Drug Res (Stuttg) ; 67(12): 698-704, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28738425

ABSTRACT

Natural products have been used for the treatment of various diseases such as cancer. Curcumin (CUR) and sulforaphane (SF) have anti-cancer effects, but their application is restricted because of their low water solubility and poor oral bioavailability. To improve the bioavailability and solubility of SF and CUR, we performed an advanced delivery of SF and CUR with PEGylated gold coated Fe3O4 magnetic nanoparticles (PEGylated Fe3O4@Au NPs) to endorse SF and CUR maintenance as an effective and promising antitumor drugs. The structure of the synthesized nanocarrieris evaluated by, transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FT-IR). The results revealed that the size of NPs was 20 nm. They were mono-dispersed in water, with high drug-loading capacity and stability. CUR and SF were encapsulated into NPs with loading capacity of 16.32±0.023% and 15.74±0.015% and entrapment efficiency of 74.57±0.14% and 72.20±0.18% respectively. The in-vitro study of SF and CUR loaded PEGylated Fe3O4@Au NPs on human breast adenocarcinoma cell line (SK-BR-3) confirmed that cytotoxicity of SF and CUR can enhance when they are loaded on PEGylated Fe3O4@Au NPs in comparison to Free SF and void CUR. The results of flow cytometry and real-time PCR shown that nano-carriers can increase therapeutic effects of SF and CUR by apoptosis and necrosis induction as well as inhibiting of migration in SK-BR-3 cell line.


Subject(s)
Curcumin/administration & dosage , Drug Delivery Systems/methods , Ferric Compounds/chemistry , Gold/chemistry , Isothiocyanates/administration & dosage , Metal Nanoparticles/chemistry , Polyethylene Glycols/chemistry , Apoptosis/drug effects , Biological Availability , Cell Line, Tumor/drug effects , Cell Migration Assays , Curcumin/pharmacology , Drug Stability , Humans , Isothiocyanates/pharmacology , Metal Nanoparticles/ultrastructure , Necrosis/chemically induced , Particle Size , Solubility , Sulfoxides
SELECTION OF CITATIONS
SEARCH DETAIL
...