Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters











Publication year range
1.
Acta Biomater ; 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39181178

ABSTRACT

The meniscus tissue is crucial for knee joint biomechanics and is frequently susceptible to injuries resulting in early-onset osteoarthritis. Consequently, the need for meniscal substitutes spurs ongoing development. The meniscus is a composite tissue reinforced with circumferential and radial collagenous fibers; the mechanical role of the latter has yet to be fully unveiled. Here, we investigated the role of radial fibers using a synergistic methodology combining meniscal tissue structure imaging, a computational knee joint model, and the fabrication of simple biomimetic composite laminates. These laminates mimic the basic structural units of the meniscus, utilizing longitudinal and transverse fibers equivalent to the circumferential and radial fibers in meniscal tissue. In the computational model, the absence of radial fibers resulted in stress concentration within the meniscus matrix and up to 800 % greater area at the same stress level. Furthermore, the contact pressure on the tibial cartilage increased drastically, affecting up to 322 % larger areas. Conversely, in models with radial fibers, we observed up to 25 % lower peak contact pressures and width changes of less than 0.1 %. Correspondingly, biomimetic composite laminates containing transverse fibers exhibited minor transverse deformations and smaller Poisson's ratios. They demonstrated structural shielding ability, maintaining their mechanical performance with the reduced amount of fibers in the loading direction, similar to the ability of the torn meniscus to carry and transfer loads to some extent. These results indicate that radial fibers are essential to distribute contact pressure and tensile stresses and prevent excessive deformations, suggesting the importance of incorporating them in novel designs of meniscal substitutes. STATEMENT OF SIGNIFICANCE: The organization of the collagen fibers in the meniscus tissue is crucial to its biomechanical function. Radially oriented fibers are an important structural element of the meniscus and greatly affect its mechanical behavior. However, despite their importance to the meniscus mechanical function, radially oriented fibers receive minor attention in meniscal substitute designs. Here, we used a synergistic methodology that combines imaging of the meniscal tissue structure, a structural computational model of the knee joint, and the fabrication of simplistic biomimetic composite laminates that mimic the basic structural units of the meniscus. Our findings highlight the importance of the radially oriented fibers, their mechanical role in the meniscus tissue, and their importance as a crucial element in engineering novel meniscal substitutes.

2.
Bioengineering (Basel) ; 11(5)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38790281

ABSTRACT

Anterior cruciate ligament (ACL) ruptures are prevalent knee injuries, with approximately 200,000 ruptures annually, and treatment costs exceed USD two billion in the United States alone. Typically, the initial detection of ACL tears and anterior tibial laxity (ATL) involves manual assessments like the Lachman test, which examines anterior knee laxity. Partial ACL tears can go unnoticed if they minimally affect knee laxity; however, they will progress to a complete ACL tear requiring surgical treatment. In this study, a computational finite element model (FEM) of the knee joint was generated to investigate the effect of partial ACL tears under the Lachman test (GNRB® testing system) boundary conditions. The ACL was modeled as a hyperelastic composite structure with a refined representation of collagen bundles. Five different tear types (I-V), classified by location and size, were modeled to predict the relationship between tear size, location, and anterior tibial translation (ATT). The results demonstrated different levels of ATT that could not be manually detected. Type I tears demonstrated an almost linear increase in ATT, with the growth in tear size ranging from 3.7 mm to 4.2 mm, from 25% to 85%, respectively. Type II partial tears showed a less linear incline in ATT (3.85, 4.1, and 4.75 mm for 25%, 55%, and 85% partial tears, respectively). Types III, IV, and V maintained a nonlinear trend, with ATTs of 3.85 mm, 4.2 mm, and 4.95 mm for Type III, 3.85 mm, 4.25 mm, and 5.1 mm for Type IV, and 3.6 mm, 4.25 mm, and 5.3 mm for Type V, for 25%, 55%, and 85% partial tears, respectively. Therefore, for small tears (25%), knee stability was most affected when the tears were located around the center of the ligament. For moderate tears (55%), the effect on knee stability was the greatest for tears at the proximal half of the ACL. However, severe tears (85%) demonstrated considerable growth in knee instability from the distal to the proximal ends of the tissue, with a substantial increase in knee instability around the insertion sites. The proposed model can enhance the characterization of partial ACL tears, leading to more accurate preliminary diagnoses. It can aid in developing new techniques for repairing partially torn ACLs, potentially preventing more severe injuries.

3.
ACS Biomater Sci Eng ; 10(6): 3707-3717, 2024 06 10.
Article in English | MEDLINE | ID: mdl-38380517

ABSTRACT

Plant tissues are constructed as composite material systems of stiff cellulose microfibers reinforcing a soft matrix. Thus, they comprise smart and multifunctional structures that can change shape in response to external stimuli due to asymmetrical fiber alignment and possess robust mechanical properties. Herein, we demonstrate the biomimetics of the plant material system using silk fiber-reinforced alginate hydrogel matrix biocomposites. We fabricate single and bilamellar biocomposites with different fiber orientations. The mechanical behavior of the biocomposites is nonlinear, with large deformations, as in plant tissues. In general, the bilamellar system shows increased modulus, strain UTS, and toughness compared to the single-lamellar system for most of the tested orientations. Overall, the biocomposites present a wide range of elastic modulus values (3.0 ± 0.6-104.7 ± 11.3 MPa) and UTS values (0.23 ± 0.04-12.5 ± 2.0 MPa). The bilamellar biocomposites demonstrated shape-transforming abilities with diverse morphing modes, emulating different plant tissues and creating complex shape-morphing structures. These multifunctional biocomposites possess tunable and robust mechanical properties, controllable shape-morphing deformations, and the ability to self-controlled encapsulation, grip, and release objects. By harnessing biomimetic principles, these soft, smart, and multifunctional materials hold potential applications spanning from soft robotics, medicine, and tissue engineering to sensing and drug delivery.


Subject(s)
Alginates , Biomimetic Materials , Biomimetic Materials/chemistry , Alginates/chemistry , Biomimetics/methods , Hydrogels/chemistry , Silk/chemistry , Elastic Modulus , Plants/chemistry
4.
Acta Biomater ; 160: 164-175, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36804822

ABSTRACT

Understanding the structure-function relationship in the intervertebral disk (IVD) is crucial for the development of novel tissue engineering strategies to regenerate IVD and the establishment of accurate computational models for low back pain research. A large number of studies have improved our knowledge of the mechanical and structural properties of the nucleus pulposus (NP) and annulus fibrosus (AF), two of the main regions in the IVD. However, few studies have focused on the AF-NP interface (transition zone; TZ). Therefore, the current study aims to, for the first time, characterize the cyclic and failure mechanical properties of the TZ region under physiological loading (1, 3, and 5%s-1 strain rates) and investigate the structural integration mechanisms between the NP, TZ, and AF regions. The results of the current study reveal significant effects of region (NP, TZ, and AF) and strain rates (1, 3, and 5%s-1) on stiffness (p < 0.001). In addition, energy absorption is significantly higher for the AF compared to the TZ and NP (p <0.001) as well as between the TZ and NP (p <0.001). The current research finds adaptation, direct penetration, and entanglement between TZ and AF fibers as three common mechanisms for structural integration between the TZ and AF regions. STATEMENT OF SIGNIFICANCE: Despite a large number of studies that have mechanically, structurally, and biologically characterized the nucleus pulposus (NP) and annulus fibrosus (AF) regions, few studies have focused on the NP-AF interface region (known as Transition Zone; TZ) in the IVD; hence, our understanding of the TZ structure-function relationship is still incomplete. Of particular importance, the cyclic mechanical properties of the TZ, compared to the adjacent regions (NP and AF), are yet to be explored and the precise nature of the structural integration between the NP and AF via the TZ region is not yet known. The current study explores both the mechanical and structural properties of the TZ region to ultimately identify the mechanism of integration between the NP and AF.


Subject(s)
Annulus Fibrosus , Intervertebral Disc Degeneration , Intervertebral Disc , Nucleus Pulposus , Humans , Intervertebral Disc/physiology , Tissue Engineering/methods
5.
J Biomed Mater Res A ; 111(5): 618-633, 2023 05.
Article in English | MEDLINE | ID: mdl-36815687

ABSTRACT

Intervertebral disc (IVD) degeneration and accompanying lower back pain impose global medical and societal challenges, affecting over 600 million people worldwide. The IVD complex fibrocartilaginous structure is responsible for the spine biomechanical function. The nucleus pulposus (NP), composed of swellable glycosaminoglycan (GAG), transfers compressive loads to the surrounding fiber-reinforced annulus fibrosus (AF) lamellae, which stretches under tension. Together, these substructures allow the IVD to withstand extremely high and complex loads. Key to mimic the complete disc must consider the properties of its substructures. This study presents three novel substructures-a biomimetic silk-reinforced composite lamella for the AF, a GAG analog for the NP, and a novel biomimetic combined AF-NP construct. The biomimetic AF demonstrates nonlinear, hyperelastic, and anisotropic behavior similar to the native human AF, while the NP analog demonstrates mechanical behavior similar to the human NP. The synergized biomimetic AF-NP demonstrates similar behavior to the unconfined NP, with significantly increased deformations indicating improved performance. Validation of the AF-NP construct mechanics using a finite element model yields results compatible with native human IVD under various physiological loadings. The ability of our AF-NP construct to mimic the native IVD offers a revolutionary concept for the potential development of a fully functional IVD.


Subject(s)
Annulus Fibrosus , Intervertebral Disc Degeneration , Intervertebral Disc , Nucleus Pulposus , Humans , Biomimetics , Intervertebral Disc/physiology , Intervertebral Disc Degeneration/therapy , Glycosaminoglycans
6.
J Mech Behav Biomed Mater ; 138: 105598, 2023 02.
Article in English | MEDLINE | ID: mdl-36455380

ABSTRACT

Soft tissues are constructed as fiber-reinforced composites consisting of structural mechanisms and unique mechanical behavior. Biomimetics of their mechanical behavior is currently a significant bioengineering challenge, emphasizing the need to replicate structural and mechanical mechanisms into novel biocomposite designs. Here we present a novel silk-based biocomposite laminate constructed from long natural silk and fibroin fibers embedded in an alginate hydrogel matrix. Controlling the mechanical features of these laminates were studied for different fiber volume fractions (VF) and orientations using unidirectional tensile tests. Three material systems were investigated having different fiber orientations: longitudinal (0°), transverse (90°), and cross-plied (0/90°). The general behavior of the biocomposite laminates was anisotropic hyperelastic with large deformations. Longitudinal fibroin laminates have shown a tensile modulus of 178.55 ± 14.46 MPa and tensile strength of 18.47 ± 2.01 MPa for 0.48 VF. With similar VF, cross-plied fibroin laminates demonstrated structural shielding ability, having a tensile modulus and tensile strength of 101.73 ± 8.04 MPa and 8.29 ± 1.63 MPa for only a third of the VF directed in the stretching direction. The stress-strain behavior was in a similar range to highly stiff native human soft tissues such as ligament and meniscus. These findings demonstrate the potential of the fibroin fiber-reinforced biocomposites to mimic the mechanics of tissues with a quantitatively controlled amount of fibers and designed spatial arrangement. This can lead to new solutions for the repair and replacement of damaged functional and highly stiff soft tissues.


Subject(s)
Fibroins , Humans , Fibroins/chemistry , Tissue Engineering , Biomimetics , Hydrogels/chemistry , Silk/chemistry
7.
Biomimetics (Basel) ; 7(4)2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36278727

ABSTRACT

Complex interfaces that involve a combination of stiff and compliant materials are widely prevalent in nature. This combination creates a superior assemblage with strength and toughness. When combining two different materials with large stiffness variations, an interfacial stress concentration is created, decreasing the structural integrity and making the structure more prone to failure. However, nature frequently combines two dissimilar materials with different properties. Additive manufacturing (AM) and 3D printing have revolutionized our engineering capabilities concerning the combination of stiff and compliant materials. The emergence of multi-material 3D-printing technologies has allowed the design of complex interfaces with combined strength and toughness, which is often challenging to achieve in homogeneous materials. Herein, we combined commercial 3D-printed stiff (PETG) and compliant (TPU) polymers using simple and bioinspired interfaces using a fused deposition modeling (FDM) printer and characterized the mechanical behaviors of the interfaces. Furthermore, we examined how the different structural parameters, such as the printing resolution (RES) and horizontal overlap distance (HOD), affect the mechanical properties. We found that the bioinspired interfaces significantly increased the strain, toughness, and tensile modulus compared with the simple interface. Furthermore, the more refined printing resolution elevated the yield stress, while the increased overlap distance mostly elevated the strain and toughness. Additionally, 3D printing allows the fabrication of other complex designs in the stiff and compliant material interface, allowing various tailor-designed and bioinspired interfaces. The importance of these bioinspired interfaces can be manifested in the biomedical and robotic fields and through interface combinations.

8.
Int J Mol Sci ; 23(16)2022 Aug 11.
Article in English | MEDLINE | ID: mdl-36012198

ABSTRACT

Despite extensive efforts over the past 40 years, there is still a significant gap in knowledge of the characteristics of elastic fibers in the intervertebral disc (IVD). More studies are required to clarify the potential contribution of elastic fibers to the IVD (healthy and diseased) function and recommend critical areas for future investigations. On the other hand, current IVD in-vitro models are not true reflections of the complex biological IVD tissue and the role of elastic fibers has often been ignored in developing relevant tissue-engineered scaffolds and realistic computational models. This has affected the progress of IVD studies (tissue engineering solutions, biomechanics, fundamental biology) and translation into clinical practice. Motivated by the current gap, the current review paper presents a comprehensive study (from the early 1980s to 2022) that explores the current understanding of structural (multi-scale hierarchy), biological (development and aging, elastin content, and cell-fiber interaction), and biomechanical properties of the IVD elastic fibers, and provides new insights into future investigations in this domain.


Subject(s)
Intervertebral Disc Degeneration , Intervertebral Disc , Elastic Tissue , Humans , Tissue Engineering , Tissue Scaffolds/chemistry
9.
Biomed Phys Eng Express ; 8(2)2022 02 18.
Article in English | MEDLINE | ID: mdl-35120335

ABSTRACT

Calcific aortic valve disease (CAVD) is the most common heart valvular disease in the developed world. Most of the relevant research has been sex-blind, ignoring sex-related biological variables and thus under-appreciate sex differences. However, females present pronounced fibrosis for the same aortic stenosis (AS) severity compared with males, who exhibit more calcification. Herein, we present a computational model of fibrocalcific AV, aiming to investigate its effect on AS development. A parametric study was conducted to explore the influence of the total collagen fiber volume and its architecture on the aortic valve area (AVA). Towards that goal, computational models were generated for three females with stenotic AVs and different volumes of calcium. We have tested the influence of fibrosis on various parameters as fiber architecture, fibrosis location, and transvalvular pressure. We found that increased fiber volume with a low calcium volume could actively contribute to AS and reduce the AVA similarly to high calcium volume. Thus, the computed AVAs for our fibrocalcific models were 0.94 and 0.84 cm2and the clinical (Echo) AVAs were 0.82 and 0.8 cm2. For the heavily calcified model, the computed AVA was 0.8 cm2and the clinical AVA was 0.73 cm2. The proposed models demonstrated how collagen thickening influence the fibrocalcific-AS process in female patients. These models can assist in the clinical decision-making process and treatment development in valve therapy for female patients.


Subject(s)
Aortic Valve Stenosis , Calcium , Aortic Valve/pathology , Aortic Valve Stenosis/pathology , Female , Fibrosis , Finite Element Analysis , Humans , Male
10.
J Mech Behav Biomed Mater ; 119: 104526, 2021 07.
Article in English | MEDLINE | ID: mdl-33894525

ABSTRACT

Cardiovascular Diseases (CVDs) are the leading cause of death worldwide. Approximately 31% of all global deaths are caused by CVDs, of which 42% are attributable to coronary artery disease (CAD). CAD is characterized by a narrowing of arteries that restricts the normal blood flow. Over time, surgical intervention is required in severe cases of occlusions and includes implantation of autologous vessels. Today synthetic grafts are used successfully as replacements for blood vessels with a diameter larger than 6 mm. However, they often fail as small-diameter blood vessel replacements. This study introduces a new biocomposite material system consisting of unique and long (cm-scale) collagen fibers derived from soft corals embedded within an alginate hydrogel matrix. The new biocomposite layers were used to fabricate grafts, towards developing a new class of tissue-engineered small-diameter blood vessels. These constructs consisted of both circumferentially and longitudinally oriented collagen fibers. The mechanical properties of the grafts were investigated via a new experimental setup constructed in our lab for this purpose, which applied internal pressure levels of 0-300 mmHg. Similar to native coronary arteries, the biocomposite tubes demonstrated a compliance of 4.88 ± 0.99%/100 mmHg for a physiologic pressure range of 80-120 mmHg. Furthermore, a numerical finite element simulation model is proposed to generate the overall mechanical response of the construct. It is composed of axial and circumferential fibers embedded within the continuum alginate elements. Good prediction is demonstrated when compared with the measured pressure-strain response. Moreover, we examined biocompatibility and cell growth on the collagen fibers. Fibroblast cells proliferated during the experiment that lasted for 32 days and showed aligned configuration with the collagen fiber orientation. The novelty of this study is manifested in the use of naturally derived coral-based long collagen fibers for the development of a new class of tissue-engineered grafts. The proposed novel biocomposite graft demonstrated both mechanical and biological compatibility and can be further developed for small-diameter blood-vessel replacement.


Subject(s)
Anthozoa , Vascular Grafting , Animals , Biomimetics , Blood Vessel Prosthesis , Collagen , Tissue Engineering
11.
J Mech Behav Biomed Mater ; 94: 298-307, 2019 06.
Article in English | MEDLINE | ID: mdl-30951990

ABSTRACT

The aging western society is heavily afflicted with intervertebral disc (IVD) degeneration. Replacement or repair of the degenerated IVD with an artificial bio-mimetic construct is one of the challenges of future research due to its complex structure and unique biomechanical function. Herein, biocomposite laminates made of long collagen fibers in unidirectional (-1.3 ±â€¯2.1°) and angle-plied ±â€¯30° orientations (30.4 ±â€¯6.4 and -29.8 ±â€¯4.5), embedded in alginate hydrogel, were fabricated to mimic the form of single annulus fibrosus (AF) lamella and the circumferential AF, respectively. The mechanical behavior of the composites was measured and compared with in vitro existing data of the human native AF as well as with new data obtained from ovine and bovine specimens. The mechanical behavior was found to reproduce the full stress- strain behavior of the human AF single lamella in several regions of the AF and the Young's modulus was 28.3 ±â€¯8.6 MPa. Moreover, the modulus of the angle-plied laminates was 16.8 ±â€¯2.9 MPa, which is approximately 5% less than the in vitro data. The full stress-strain behavior was also compared with bovine and ovine circumferential AF samples and found to be very similar, with a difference in the modulus of 4.1% and 19.7%, respectively. Moreover, an FE model of the L3-L4 functional spinal unit (FSU) was developed and calibrated to evaluate the mechanical ability of the biocomposite to be used as an AF substitute under physiological IVD loading modes. The biocomposite demonstrated a good ability to mimic the stiffness of the native tissue under physiologic loading modes as flexion, extension, lateral bending and compression, but was too flexible under torsion. It was found that the proposed biomimetics AF design resulted in a compatible function in several mechanical levels, which holds great potential to be used as a viable AF replacement towards full IVD engineering.


Subject(s)
Annulus Fibrosus , Biomimetics , Tissue Engineering , Finite Element Analysis , Tensile Strength
13.
J Biomech Eng ; 141(2)2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30347039

ABSTRACT

The annulus fibrosus (AF) of the intervertebral disc (IVD) consists of a set of concentric layers composed of a primary circumferential collagen fibers arranged in an alternating oblique orientation. Moreover, there exists an additional secondary set of radial translamellar collagen fibers which connects the concentric layers, creating an interconnected fiber network. The aim of this study was to investigate the mechanical role of the radial fiber network. Toward that goal, a three-dimensional (3D) finite element model of the L3-L4 spinal segment was generated and calibrated to axial compression and pure moment loading. The AF model explicitly recognizes the two heterogeneous networks of fibers. The presence of radial fibers demonstrated a pronounced effect on the local disc responses under lateral bending, flexion, and extension modes. In these modes, the radial fibers were in a tensile state in the disc region that subjected to compression. In addition, the circumferential fibers, on the opposite side of the IVD, were also under tension. The local stress in the matrix was decreased in up to 9% in the radial fibers presence. This implies an active fiber network acting collectively to reduce the stresses and strains in the AF lamellae. Moreover, a reduction of 26.6% in the matrix sideways expansion was seen in the presence of the radial fibers near the neutral bending axis of the disc. The proposed biomechanical model provided a new insight into the mechanical role of the radial collagen fibers in the AF structure. This model can assist in the design of future IVD substitutes.

14.
Biophys J ; 115(7): 1357-1370, 2018 10 02.
Article in English | MEDLINE | ID: mdl-30217380

ABSTRACT

Biological cells embedded in fibrous matrices have been observed to form intercellular bands of dense and aligned fibers through which they mechanically interact over long distances. Such matrix-mediated cellular interactions have been shown to regulate various biological processes. This study aimed to explore the effects of elastic nonlinearity of the fibers contained in the extracellular matrix (ECM) on the transmission of mechanical loads between contracting cells. Based on our biological experiments, we developed a finite-element model of two contracting cells embedded within a fibrous network. The individual fibers were modeled as showing linear elasticity, compression microbuckling, tension stiffening, or both of the latter two. Fiber compression buckling resulted in smaller loads in the ECM, which were primarily directed toward the neighboring cell. These loads decreased with increasing cell-to-cell distance; when cells were >9 cell diameters apart, no such intercellular interaction was observed. Tension stiffening further contributed to directing the loads toward the neighboring cell, though to a smaller extent. The contraction of two neighboring cells resulted in mutual attraction forces, which were considerably increased by tension stiffening and decayed with increasing cell-to-cell distances. Nonlinear elasticity contributed also to the onset of force polarity on the cell boundaries, manifested by larger contractile forces pointing toward the neighboring cell. The density and alignment of the fibers within the intercellular band were greater when fibers buckled under compression, with tension stiffening further contributing to this structural remodeling. Although previous studies have established the role of the ECM nonlinear mechanical behavior in increasing the range of force transmission, our model demonstrates the contribution of nonlinear elasticity of biological gels to directional and efficient mechanical signal transfer between distant cells, and rehighlights the importance of using fibrous gels in experimental settings for facilitating intercellular communication. VIDEO ABSTRACT.


Subject(s)
Cell Communication , Elasticity , Extracellular Matrix/metabolism , Nonlinear Dynamics , Animals , Biomechanical Phenomena , Mice , Models, Biological , NIH 3T3 Cells
15.
Spine J ; 18(11): 2119-2127, 2018 11.
Article in English | MEDLINE | ID: mdl-29969731

ABSTRACT

BACKGROUND: The intervertebral disc (IVD) is a complex organ that acts as a flexible coupling between two adjacent vertebral bodies and must therefore accommodate compression, bending, and torsion. It consists of three main components, which are elegantly structured to allow this: the annulus fibrosus (AF), the nucleus pulposus (NP), and the end-plates (EP). PURPOSE: Thus far, it has not been possible to examine the microarchitecture of the disc directly in three dimensions in its unaltered state and thus knowledge of the overall architecture of the disc has been inferred from a range of imaging sources, or by using destructive methods. STUDY DESIGN: A nondestructive ultrahigh field Magnetic Resonance Imaging (MRI) of 11.7 T was used together with image analysis to visualize the ovine IVDs. METHODS: Three-dimensional image stacks from eight IVDs harvested from sheep, half of which were 4 to 5 years old and the others approximately 2 years old were reconstructed and examined, and their microstructure were imaged. The overall structure of the disc, including the average of 14 AF lamellae (9-28), NP, and EP was then visualized with particular attention given to integrating elements as radial translamellar cross-links, AF-NP transition zone EP-AF integration and EP-NP insertion nodes (ie the connecting junctions between the EP and NP). Moreover, collagen fiber orientation was determined at different depths and locations throughout the annulus. RESULTS: It was found that there was a clearer demarcation in the AF-NP transition zone of the younger discs compared with the older ones. This difference was reflected in the visibility of AF-NP and EP-AF integration. It was also possible to view the fiber architecture of the AF-NP integration in greater depth than was possible previously with histological techniques. These fibers were mainly observed in the younger discs and their length was measured to be of 2.6 ± 0.2 mm. CONCLUSIONS: The present results provide a substantial advance in visualization of the three-dimensional architecture of an intact IVD and the integration of its components.


Subject(s)
Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Intervertebral Disc Degeneration/diagnostic imaging , Intervertebral Disc/diagnostic imaging , Magnetic Resonance Imaging/methods , Animals , Annulus Fibrosus/diagnostic imaging , Nucleus Pulposus/diagnostic imaging , Sheep
16.
Mar Drugs ; 16(4)2018 Mar 23.
Article in English | MEDLINE | ID: mdl-29570651

ABSTRACT

The challenge to develop grafts for tissue regeneration lies in the need to obtain a scaffold that will promote cell growth in order to form new tissue at a trauma-damaged site. Scaffolds also need to provide compatible mechanical properties that will support the new tissue and facilitate the desired physiological activity. Here, we used natural materials to develop a bio-composite made of unique collagen embedded in an alginate hydrogel material. The collagen fibers used to create the building blocks exhibited a unique hyper-elastic behavior similar to that of natural human tissue. The prominent mechanical properties, along with the support of cell adhesion affects cell shape and supports their proliferation, consequently facilitating the formation of a new tissue-like structure. The current study elaborates on these unique collagen fibers, focusing on their structure and biocompatibility, in an in vitro model. The findings suggest it as a highly appropriate material for biomedical applications. The promising in vitro results indicate that the distinctive collagen fibers could serve as a scaffold that can be adapted for tissue regeneration, in support of healing processes, along with maintaining tissue mechanical properties for the new regenerate tissue formation.


Subject(s)
Anthozoa/chemistry , Collagen/chemistry , Materials Testing , 3T3-L1 Cells , Animals , Biomechanical Phenomena , Hydrogels/chemistry , Mice , Tissue Scaffolds
17.
J Mech Behav Biomed Mater ; 36: 71-81, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24801102

ABSTRACT

A novel collagen-based bio-composite was constructed from micro-crimped long collagen fiber bundles extracted from a soft coral embedded in alginate hydrogel matrix. The mechanical features of this bio-composite were studied for different fiber fractions and in longitudinal and transverse loading modes. The tensile modulus of the alginate hydrogel was 0.60±0.35MPa and in longitudinal collagen-reinforced construct it increased up to 9.71±2.80 for 50% fiber fraction. Ultimate tensile strength was elevated from 0.08±0.04MPa in matrix up to 1.21±0.29 for fiber fraction of 30%. The bio-composite demonstrated hyperelastic behavior similar to human native tissues. Additionally, a dedicated constitutive material model was developed to enable the prediction of the longitudinal mechanical behavior of the bio-composite. These findings will allow tailor-designed mechanical properties with a quantitatively controlled amount of fibers and their designed spatial arrangement. This unique bio-composite has the potential to be used for a wide range of engineered soft tissues.


Subject(s)
Anthozoa/chemistry , Biocompatible Materials/chemical synthesis , Biological Products/chemistry , Fibrillar Collagens/chemistry , Fibrillar Collagens/ultrastructure , Tissue Engineering/methods , Animals , Anthozoa/ultrastructure , Elastic Modulus , Materials Testing , Stress, Mechanical , Tensile Strength , Tissue Engineering/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL