Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 25(3)2020 Feb 02.
Article in English | MEDLINE | ID: mdl-32024254

ABSTRACT

The frequency of mycoses caused by drug-resistant fungal pathogen Candida albicans has increased drastically over the last two decades. The spread of drug-resistant strains, along with the limitations of currently available antifungals, complicates the management of fungal infections, thereby representing great challenges for clinical healthcare. Among various antimicrobial pharmacophores, 2(5H)-furanone derivatives have demonstrated antimicrobial, antifungal, and antibiofilm activities. In this study, we report the antifungal activity of the 2(5H)-furanone derivative F105, consisting of three pharmacophores, namely chlorinated 2(5H)-furanone, sulfonyl group, and l-menthol moiety. Although exhibiting moderate antifungal activity alone with the minimum inhibitory concentration (MIC) values of 32-256 µg/mL, F105 potentiates the activity of fluconazole and terbinafine with fractional inhibitory concentration index (FICI) values of 0.27-0.50. Thus, 16 µg/mL of F105 reduced the MICs of these antifungals against fluconazole-resistant C. albicans isolates four-fold, achieving similar values as for the intermediately susceptible phenotype. Confocal laser scanning microscopy revealed that the fluorescent 2(5H)-furanone derivative F145 was also able to penetrate through biofilms formed by C. albicans. Indeed, in the presence of F105, even sub-MIC concentrations of both fluconazole and terbinafine led to significant reduction of C. albicans CFUs in the mature biofilm. Thus, F105 appears to be a promising candidate for the development of novel antifungal agents as well as enhancers of current antifungal agents, particularly for the treatment of drug-resistant C. albicans infections.


Subject(s)
Antifungal Agents/pharmacology , Candida albicans/drug effects , Drug Resistance, Fungal , Fluconazole/pharmacology , Terbinafine/pharmacology , Antifungal Agents/chemistry , Biofilms/drug effects , Candidiasis/drug therapy , Candidiasis/microbiology , Dose-Response Relationship, Drug , Fluconazole/chemistry , Humans , Microbial Sensitivity Tests , Terbinafine/chemistry
2.
Int J Mol Sci ; 20(3)2019 Feb 06.
Article in English | MEDLINE | ID: mdl-30736278

ABSTRACT

Staphylococcus aureus causes various infectious diseases, from skin impetigo to life-threatening bacteremia and sepsis, thus appearing an important target for antimicrobial therapeutics. In turn, the rapid development of antibiotic resistance and biofilm formation makes it extremely robust against treatment. Here, we unravel the molecular mechanism of the antimicrobial activity of the recently unveiled F105 consisting of three pharmacophores: chlorinated 2(5H)-furanone, sulfone, and l-menthol moieties. F105 demonstrates highly selective activity against Gram-positive bacteria and biofilm-embedded S. aureus and exhibits low risk of resistance development. We show explicitly that the fluorescent analogue of F105 rapidly penetrates into Gram-positive bacteria independently of their cell integrity and viability and accumulates there. By contrast, Gram-negative bacteria remain impermeable and, therefore, insusceptible to F105. Apparently, in bacterial cells, F105 induces reactive oxygen species (ROS) formation and nonspecifically interacts with a number of proteins, including ROS-utilizing ones. Using native and 2D PAGE, we confirm that F105 changes the charge of some proteins by either oxidation or direct interaction with them. Therefore, it seems justified to conclude that being simultaneously a ROS inducer and damaging proteins responsible for ROS utilization, F105 impairs the cellular anti-ROS defense representing a prospective ROS-inducing antibacterial agent.


Subject(s)
Anti-Bacterial Agents/pharmacology , Furans/pharmacology , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Biofilms/drug effects , Drug Discovery , Furans/chemical synthesis , Furans/chemistry , Humans , Hydrogen Peroxide/pharmacology , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , Reactive Oxygen Species/metabolism , Staphylococcus aureus/metabolism
3.
New Microbiol ; 42(1): 29-36, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30671584

ABSTRACT

Among a variety of antimicrobial compounds, the derivatives of 2(5H)-furanone exhibit different effects on Firmicutes and Proteobacteria. While inhibiting quorum-dependent biofilm formation and virulence factor expression by Gram-negative bacteria through specific interference with the AI-2 signaling pathways, these compounds demonstrate bactericidal effects against Gram-positive bacteria. Here we report that 3,4-dichloro-5(S)-[(1S,2R,4S)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yloxy]-2(5H)-furanone designed as F123 inhibits growth and biofilm formation by the food-poisoning bacterium Bacillus cereus at 8 µg/ ml and kills bacteria at 16 µg/ml. While the growth of Staphylococcus aureus, Staphylococcus epidermidis, Micrococcus luteus, Bacillus subtilis were also inhibited at 8-16 µg/ml of F123, no bactericidal effect on these strains was observed at concentrations up to 128 µg/ml, suggesting pronounced specificity of F123 for B. cereus. In a checker-board assay F123 increased the efficacy of amikacin, gentamicin and benzalkonium chloride against B. cereus with medians of fractional inhibitory concentration index of 0.38, 0.56 and 0.56, respectively. Moreover, the number of viable B. cereus cells in biofilm was reduced by more than 3 orders of magnitude at 64 µg/ml of F123, suggesting its chemotype as a promising enhancer for specific treatment of B. cereus-associated topical infections, including biofilm-embedded bacteria.


Subject(s)
Anti-Bacterial Agents , Bacillus cereus , Furans/pharmacology , Anti-Bacterial Agents/pharmacology , Bacillus cereus/drug effects , Biofilms/drug effects , Furans/chemistry , Gram-Negative Bacteria/drug effects , Signal Transduction/drug effects
4.
PLoS One ; 13(5): e0193267, 2018.
Article in English | MEDLINE | ID: mdl-29715298

ABSTRACT

Fluorescent staining is a common tool for both quantitative and qualitative assessment of pro- and eukaryotic cells sub-population fractions by using microscopy and flow cytometry. However, direct cell counting by flow cytometry is often limited, for example when working with cells rigidly adhered either to each other or to external surfaces like bacterial biofilms or adherent cell lines and tissue samples. An alternative approach is provided by using fluorescent microscopy and confocal laser scanning microscopy (CLSM), which enables the evaluation of fractions of cells subpopulations in a given sample. For the quantitative assessment of cell fractions in microphotographs, we suggest a simple two-step algorithm that combines single cells selection and the statistical analysis. To facilitate the first step, we suggest a simple procedure that supports finding the balance between the detection threshold and the typical size of single cells based on objective cell size distribution analysis. Based on a series of experimental measurements performed on bacterial and eukaryotic cells under various conditions, we show explicitly that the suggested approach effectively accounts for the fractions of different cell sub-populations (like the live/dead staining in our samples) in all studied cases that are in good agreement with manual cell counting on microphotographs and flow cytometry data. This algorithm is implemented as a simple software tool that includes an intuitive and user-friendly graphical interface for the initial adjustment of algorithm parameters to the microphotographs analysis as well as for the sequential analysis of homogeneous series of similar microscopic images without further user intervention. The software tool entitled BioFilmAnalyzer is freely available online at https://bitbucket.org/rogex/biofilmanalyzer/downloads/.


Subject(s)
Algorithms , Bacteria/growth & development , Biofilms/growth & development , Colonic Neoplasms/pathology , Flow Cytometry/methods , Image Processing, Computer-Assisted/methods , Microscopy, Fluorescence/methods , Humans , Single-Cell Analysis/methods , Software , Tumor Cells, Cultured
5.
Front Microbiol ; 8: 2246, 2017.
Article in English | MEDLINE | ID: mdl-29209288

ABSTRACT

The gram-positive opportunistic bacterium Staphylococcus aureus is one of the most common causatives of a variety of diseases including skin and skin structure infection or nosocomial catheter-associated infections. The biofilm formation that is an important virulence factor of this microorganism renders the antibiotic therapy ineffective, because biofilm-embedded bacteria exhibit strongly increased tolerance to antimicrobials. Here, we describe a novel 3-chloro-5(S)-[(1R,2S,5R)-2-isopropyl-5-methylcyclohexyloxy]-4-[4-methylphenylsulfonyl]-2(5H)-furanone (F105), possessing a sulfonyl group and l-menthol moiety. Minimal inhibitory and bactericidal concentration values (MIC and MBC) of F105 were 10 and 40 mg/L, respectively, suggesting F105 biocidal properties. F105 exhibits pronounced activity against biofilm-embedded S. aureus and increases the efficacy of aminoglycosides (amikacin, gentamicin, and kanamycin) and benzalkonium chloride with fractional inhibitory concentration index values of 0.33-0.44 and 0.29, respectively, suggesting an alternative external treatment option, e.g., for wound infections. Moreover, low concentrations (0.5-1.3 mg/L) of F105 reduced the MICs of these antimicrobials twofold. By using confocal laser scanning microscopy and CFU counting, we show explicitly that F105 also restores the antimicrobial activity of gentamicin and ampicillin against S. aureus biofilms by several orders of magnitude. Biofilm structures were not destroyed but sterilized, with embedded cells being almost completely killed at twofold MBC. While F105 is quite toxic (CC50/MBC ratio 0.2), our data suggest that the F105 chemotype might be a promising starting point for the development of complex topical agents for combined anti-staphylococcal biofilm-therapies restoring the efficacy of some antibiotics against difficult to treat S. aureus biofilm.

6.
J Antibiot (Tokyo) ; 68(5): 297-301, 2015 May.
Article in English | MEDLINE | ID: mdl-25335695

ABSTRACT

Gram-positive bacteria can cause various infections including hospital-acquired infections. While in the biofilm, the resistance of bacteria to both antibiotics and the human immune system is increased causing difficulties in the treatment. Bacillus subtilis, a non-pathogenic Gram-positive bacterium, is widely used as a model organism for studying biofilm formation. Here we investigated the effect of novel synthesized chloro- and bromo-containing 2(5H)-furanones on biofilm formation by B. subtilis. Mucobromic acid (3,4-dibromo-5-hydroxy-2(5H)-furanone) and the two derivatives of mucochloric acid (3,4-dichloro-5-hydroxy-2(5H)-furanone)-F8 and F12-were found to inhibit the growth and to efficiently prevent biofilm formation by B. subtilis. Along with the low production of polysaccharide matrix and repression of the eps operon, strong repression of biofilm-related yqxM also occurred in the presence of furanones. Therefore, our data confirm that furanones affect significantly the regulatory pathway(s) leading to biofilm formation. We propose that the global regulator, Spo0A, is one of the potential putative cellular targets for these compounds.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacillus subtilis/physiology , Biofilms/drug effects , Biofilms/growth & development , Furans/pharmacology , Hydrocarbons, Chlorinated/pharmacology , Anti-Bacterial Agents/chemistry , Furans/chemistry , Microbial Sensitivity Tests , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...