Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
2.
Cell Death Discov ; 3: 16106, 2017.
Article in English | MEDLINE | ID: mdl-28149533

ABSTRACT

Tumour necrosis factor-α (TNF-α) is a double-edged cytokine associated with pathogenesis of inflammatory-related cancers being also able to induce cancer cell death. In the process of tumour development or metastasis, cancer cells can become resistant to TNF-α. In trefoil factor 3 (TFF3) overexpressing colorectal adenocarcinoma cells (HT-29/B6), we observed enhanced resistance against TNF-α/interferon gamma-induced apoptosis. TFF3 is a secreted small peptide that supports intestinal tissue repair but is also involved in intestinal tumour progression and scattering. We hypothesised that TFF3 rescues intestinal epithelial cancer cells from TNF-α-induced apoptosis by involving regulatory RNA networks. In silico-based expression analysis revealed TFF3-mediated regulation of selected microRNAs as well as long non-coding RNAs (lncRNAs), whereas miR-491-5p was identified to target the lncRNA 'psoriasis susceptibility-related RNA gene induced by stress' (PRINS). RNA interference-based gain- and loss-of-function experiments examined miR-491-PRINS axis to exert the TFF3-mediated phenotype. Chemical inhibition of selected pathways showed that phosphatidylinositol 3-kinase/AKT accounts for TFF3-mediated downregulation of miR-491-5p and accumulation of PRINS. Moreover, we showed that PRINS colocalises with PMAIP1 (NOXA) in nuclei of HT-29/B6 possessing inhibitory effects. Immunoprecipitation experiments proved molecular interaction of PMAIP1 with PRINS. Our study provides an insight into RNA regulatory networks that determine resistance of colorectal cancer cells to apoptosis.

3.
Front Genet ; 8: 222, 2017.
Article in English | MEDLINE | ID: mdl-29312443

ABSTRACT

Background: Global as well as specific expression profiles of selected rat tissues were characterized to assess the safety of genetically modified (GM) maize MON810 containing the insecticidal protein Cry1Ab. Gene expression was evaluated by use of Next Generation Sequencing (NGS) as well as RT-qPCR within rat intestinal tissues based on mandatory 90-day rodent feeding studies. In parallel to two 90-day feeding studies, the transcriptional response of rat tissues was assessed as another endpoint to enhance the mechanistic interpretation of GM feeding studies and/or to facilitate the generation of a targeted hypothesis. Rats received diets containing 33% GM maize (MON810) or near-isogenic control maize. As a site of massive exposure to ingested feed the transcriptomic response of ileal and colonic tissue was profiled via RT-qPCR arrays targeting apoptosis, DNA-damage/repair, unfolded protein response (UPR). For global RNA profiling of rat ileal tissue, we applied NGS. Results: No biological response to the GM-diet was observed in male and in female rat tissues. Transcriptome wide analysis of gene expression by RNA-seq confirmed these findings. Nevertheless, gene ontology (GO) analysis clearly associated a set of distinctly regulated transcripts with circadian rhythms. We confirmed differential expression of circadian clock genes using RT-qPCR and immunoassays for selected factors, thereby indicating physiological effects caused by the time point of sampling. Conclusion: Prediction of potential unintended effects of GM-food/feed by transcriptome based profiling of intestinal tissue presents a novel approach to complement classical toxicological testing procedures. Including the detection of alterations in signaling pathways in toxicity testing procedures may enhance the confidence in outcomes of toxicological trials. In this study, no significant GM-related changes in intestinal expression profiles were found in rats fed GM-maize MON810. Relevant alterations of selected cellular pathways (apoptosis, DNA damage and repair, UPR) pointing toward intestinal toxicity of the diets were not observed. Transcriptomic profiles did not reveal perturbations of pathways associated with toxicity, underlining the study results revealed by classical OECD endpoints.

4.
Reprod Biol Endocrinol ; 14(1): 44, 2016 Aug 15.
Article in English | MEDLINE | ID: mdl-27526775

ABSTRACT

BACKGROUND: The mammalian oviduct provides the optimal environment for gamete maturation including sperm capacitation, fertilization, and development of the early embryo. Various cell culture models for primary bovine oviductal epithelial cells (BOEC) were established to reveal such physiological events. The aim of this study was to evaluate 17 candidate mRNA expression patterns in oviductal epithelial cells (1) in transition from in vivo cells to in vitro cells; (2) during three consecutive cell culture passages; (3) affected by the impact of LOW or HIGH glucose content media; and (4) influenced by different phases of the estrous cycle in vivo and in vitro. In addition, the release of a metabolite and proteins from BOEC at two distinct cell culture passage numbers was estimated to monitor the functionality. METHODS: BOEC from 8 animals were isolated and cultured for three consecutive passages. Total RNA was extracted from in vivo and in vitro samples and subjected to reverse transcription quantitative polymerase chain reaction to reveal mRNA expression of selected candidate genes. The release of prostaglandin E2 (PGE2), oviduct-specific glycoprotein 1 (OVGP1) and interleukin 8 (IL8) by BOEC was measured by EIA or ELISA after 24 h. RESULTS: Almost all candidate genes (prostaglandin synthases, enzymes of cellular metabolism and mucins) mRNA expression pattern differed compared in vivo with in vitro state. In addition, transcription of most candidate genes was influenced by the number of cell culture passages. Different glucose medium content did not affect mRNA expression of most candidate genes. The phase of the estrous cycle altered some candidate mRNA expression in BOEC in vitro at later passages. The release of PGE2 and OVGP1 between passages did not differ. However, BOEC in passage 3 released significantly higher amount of IL8 compared with cells in passage 0. CONCLUSION: This study supports the hypothesis that candidate mRNA expression in BOEC was influenced by transition from the in vivo situation to the new in vitro environment and during consecutive passages. The consequence of cell culture passaging on BOEC ability to release bioactive compounds should be considered.


Subject(s)
Epithelial Cells/metabolism , Fallopian Tubes/metabolism , Genetic Association Studies/methods , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Animals , Cattle , Cell Culture Techniques , Cells, Cultured , Dinoprostone/biosynthesis , Dinoprostone/genetics , Fallopian Tubes/cytology , Female , Gene Expression Regulation , Glycoproteins/biosynthesis , Glycoproteins/genetics
5.
Arch Toxicol ; 90(10): 2531-62, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27439414

ABSTRACT

The GRACE (GMO Risk Assessment and Communication of Evidence; www.grace-fp7.eu ) project was funded by the European Commission within the 7th Framework Programme. A key objective of GRACE was to conduct 90-day animal feeding trials, animal studies with an extended time frame as well as analytical, in vitro and in silico studies on genetically modified (GM) maize in order to comparatively evaluate their use in GM plant risk assessment. In the present study, the results of a 1-year feeding trial with a GM maize MON810 variety, its near-isogenic non-GM comparator and an additional conventional maize variety are presented. The feeding trials were performed by taking into account the guidance for such studies published by the EFSA Scientific Committee in 2011 and the OECD Test Guideline 452. The results obtained show that the MON810 maize at a level of up to 33 % in the diet did not induce adverse effects in male and female Wistar Han RCC rats after a chronic exposure.


Subject(s)
Animal Feed , Food, Genetically Modified/toxicity , Health Status , Plants, Genetically Modified/toxicity , Zea mays/genetics , Animal Feed/standards , Animal Feed/toxicity , Animals , Female , Male , Rats, Inbred Strains , Risk Assessment , Toxicity Tests, Chronic
7.
Article in English | MEDLINE | ID: mdl-27014637

ABSTRACT

Main survival mechanism of pathogenic mycobacteria is to escape inimical phagolysosomal environment inside the macrophages. Many efforts have been made to unravel the molecular mechanisms behind this process. However, little is known about the involvement of microRNAs (miRNAs) in the regulation of phagolysosomal biosynthesis and maturation. Based on a bottom up approach, we searched for miRNAs that were involved in phagolysosomal processing events in the course of mycobacterial infection of macrophages. After infecting THP-1 derived macrophages with viable and heat killed Mycobacterium bovis BCG (BCG), early time points were identified after co-localization studies of the phagosomal marker protein LAMP1 and BCG. Differences in LAMP1 localization on the phagosomes of both groups were observed at 30 min and 4 h. After in silico based pre-selection of miRNAs, expression analysis at the identified time points revealed down-regulation of three miRNAs: miR-3619-5p, miR-637, and miR-324-3p. Consequently, most likely targets were predicted that were supposed to be mutually regulated by these three studied miRNAs. The lysosomal cysteine protease Cathepsin S (CTSS) and Rab11 family-interacting protein 4 (RAB11FIP4) were up-regulated and were considered to be connected to lysosomal trafficking and autophagy. Interaction studies verified the regulation of CTSS by miR-3619-5p. Down-regulation of CTSS by ectopic miR-3619-5p as well as its specific knockdown by siRNA affected the process of autophagy in THP-1 derived macrophages.


Subject(s)
Autophagy/genetics , Cathepsins/metabolism , Macrophages/microbiology , MicroRNAs/genetics , Mycobacterium bovis/genetics , Carrier Proteins/metabolism , Cell Line, Tumor , HeLa Cells , Humans , Lysosomal-Associated Membrane Protein 1/metabolism , Membrane Proteins/metabolism , Phagosomes/metabolism , RNA Interference , RNA, Messenger/genetics , RNA, Small Interfering/genetics
8.
Sci Rep ; 5: 12681, 2015 Jul 30.
Article in English | MEDLINE | ID: mdl-26223582

ABSTRACT

Recent progress in mammalian intestinal epithelial cell culture led to novel concepts of tissue modeling. Especially the development of phenotypically stable cell lines from individual animals enables an investigation of distinct intestinal loci and disease states. We here report primary and prolonged culture of normal porcine epithelial cells from colon for cell line development. In addition, a novel primary three-dimensional intestinal culture system is presented, which generated organoids composed of a highly polarized epithelial layer lining a core of subepithelial tissue. Cellular characterization of monolayer cell lines revealed epithelial identity and pointed to a proliferative crypt cell phenotype. We evaluated both RNAi and chemical approaches to induce epithelial differentiation in generated cell lines by targeting promoters of epithelial to mesenchymal transition (EMT). By in silico prediction and ectopic expression, miR-147b was proven to be a potent trigger of intestinal epithelial cell differentiation. Our results outline an approach to generate phenotypically stable cell lines expanded from primary colonic epithelial cultures and demonstrate the relevance of miR-147b and chemical inhibitors for promoting epithelial differentiation features.


Subject(s)
Cell Differentiation/drug effects , Colon/metabolism , Epithelial Cells/metabolism , Epithelial-Mesenchymal Transition/drug effects , Intestinal Mucosa/metabolism , RNA, Small Interfering/pharmacology , Animals , Colon/cytology , Epithelial Cells/cytology , Intestinal Mucosa/cytology , MicroRNAs/metabolism , Swine
9.
Arch Toxicol ; 88(12): 2289-314, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25270621

ABSTRACT

The GMO Risk Assessment and Communication of Evidence (GRACE; www.grace-fp7.eu ) project is funded by the European Commission within the 7th Framework Programme. A key objective of GRACE is to conduct 90-day animal feeding trials, animal studies with an extended time frame as well as analytical, in vitro and in silico studies on genetically modified (GM) maize in order to comparatively evaluate their use in GM plant risk assessment. In the present study, the results of two 90-day feeding trials with two different GM maize MON810 varieties, their near-isogenic non-GM varieties and four additional conventional maize varieties are presented. The feeding trials were performed by taking into account the guidance for such studies published by the EFSA Scientific Committee in 2011 and the OECD Test Guideline 408. The results obtained show that the MON810 maize at a level of up to 33 % in the diet did not induce adverse effects in male and female Wistar Han RCC rats after subchronic exposure, independently of the two different genetic backgrounds of the event.


Subject(s)
Animal Feed , Food, Genetically Modified/toxicity , Plants, Genetically Modified/toxicity , Zea mays/genetics , Administration, Oral , Animal Feed/standards , Animal Feed/toxicity , Animals , Body Weight , Consumer Product Safety , Diet , Female , Male , Organ Size , Rats, Inbred Strains , Research Design , Risk Assessment , Toxicity Tests, Subchronic
10.
PLoS One ; 8(11): e81427, 2013.
Article in English | MEDLINE | ID: mdl-24282594

ABSTRACT

BACKGROUND: As a consequence of recent RNAseq efforts, miRNAomes of diverse tissues and species are available. However, most interactions between microRNAs and regulated mRNAs are still to be deciphered. While in silico analysis of microRNAs results in prediction of hundreds of potential targets, bona-fide interactions have to be verified e.g. by luciferase reporter assays using fused target sites as well as controls incorporating mutated seed sequences. The aim of this study was the development of a straightforward approach for sequential mutation of multiple target sites within a given 3' UTR. METHODOLOGY/PRINCIPAL FINDINGS: The established protocol is based on Seed Mutagenesis Assembly PCR (SMAP) allowing for rapid identification of microRNA target sites. Based on the presented approach, we were able to determine the transcription factor NKX3.1 as a genuine target of miR-155. The sequential mutagenesis of multiple microRNA target sites was examined by miR-29a mediated CASP7 regulation, which revealed one of two predicted target sites as the predominant site of interaction. Since 3' UTR sequences of non-model organisms are either lacking in databases or computationally predicted, we developed a Stem-Loop 3' UTR RACE PCR (SLURP) for efficient generation of required 3' UTR sequence data. The stem-loop primer allows for first strand cDNA synthesis by nested PCR amplification of the 3' UTR. Besides other applications, the SLURP method was used to gain data on porcine CASP7 3'UTR evaluating evolutionary conservation of the studied interaction. CONCLUSIONS/SIGNIFICANCE: Sequential seed mutation of microRNA targets based on the SMAP approach allows for rapid structural analysis of several target sites within a given 3' UTR. The combination of both methods (SMAP and SLURP) enables targeted analysis of microRNA binding sites in hitherto unknown mRNA 3' UTRs within a few days.


Subject(s)
MicroRNAs/chemistry , 3' Untranslated Regions , Base Sequence , DNA Primers , Female , HeLa Cells , Homeodomain Proteins/genetics , Humans , MicroRNAs/genetics , Mutagenesis , Polymerase Chain Reaction , Transcription Factors/genetics
11.
PLoS One ; 8(6): e67300, 2013.
Article in English | MEDLINE | ID: mdl-23826261

ABSTRACT

BACKGROUND: Salmonella are able to modulate host cell functions facilitating both uptake and resistance to cellular host defence mechanisms. While interactions between bacterial modulators and cellular proteins have been the main focus of Salmonella research, relatively little is known about mammalian gene regulation in response to Salmonella infection. A major class of mammalian gene modulators consists of microRNAs. For our study we examined interactions of microRNAs and regulated mRNAs in mammalian intestinal Salmonella infections using a piglet model. METHODOLOGY/PRINCIPAL FINDINGS: After performing microRNA as well as mRNA specific microarray analysis of ileal samples from Salmonella infected as well as control piglets, we integrated expression analysis with target prediction identifying microRNAs that mainly regulate focal adhesion as well as actin cytoskeleton pathways. Particular attention was given to miR-29a, which was involved in most interactions including Caveolin 2. RT-qPCR experiments verified up-regulation of miR-29a after infection while its predicted target Caveolin 2 was significantly down-regulated as examined by transcript and protein detection. Reporter gene assays as well as RNAi experiments confirmed Caveolin 2 to be a miR-29a target. Knock-down of Caveolin 2 in intestinal epithelial cells resulted in retarded proliferation as well as increased bacterial uptake. In addition, our experiments showed that Caveolin 2 regulates the activation of the small Rho GTPase CDC42 but apparently not RAC1 in human intestinal cells. CONCLUSIONS/SIGNIFICANCE: Our study outlines for the first time important regulation pathways in intestinal Salmonella infection pointing out that focal adhesion and organisation of actin cytoskeleton are regulated by microRNAs. Functional relevance is shown by miR-29a mediated Caveolin 2 regulation, modulating the activation state of CDC42. Further analysis of examined interactions may support the discovery of novel strategies impairing the uptake of intracellular pathogens.


Subject(s)
Caveolin 2/genetics , Gene Expression Regulation , Intestines/microbiology , MicroRNAs/genetics , Salmonella Infections, Animal/genetics , Salmonella Infections, Animal/microbiology , Salmonella typhimurium/physiology , Actin Cytoskeleton/metabolism , Animals , Blotting, Western , Caveolin 2/metabolism , Cell Proliferation , Epithelial Cells/metabolism , Epithelial Cells/pathology , Focal Adhesions/metabolism , Gene Expression Profiling , Gene Knockdown Techniques , Gene Regulatory Networks/genetics , Genes, Reporter , Humans , Intestinal Mucosa/metabolism , Intestines/pathology , MicroRNAs/metabolism , Oligonucleotide Array Sequence Analysis , RNA Interference , RNA, Messenger/genetics , RNA, Messenger/metabolism , Salmonella Infections, Animal/pathology , Sus scrofa/genetics , Sus scrofa/microbiology , Up-Regulation/genetics , cdc42 GTP-Binding Protein/metabolism
12.
BMC Genomics ; 13: 23, 2012 Jan 16.
Article in English | MEDLINE | ID: mdl-22248082

ABSTRACT

BACKGROUND: Small interfering and non-coding RNAs regulate gene expression across all kingdoms of life. MicroRNAs constitute an important group of metazoan small RNAs regulating development but also disease. Accordingly, in functional genomics microRNA expression analysis sheds more and more light on the dynamic regulation of gene expression in various cellular processes. RESULTS: We have developed custom RT-qPCR arrays allowing for accurate quantification of 31 small RNAs in triplicate using a 96 well format. In parallel, we provide accurate normalisation of microRNA expression data based on the quantification of 5 reference snRNAs. We have successfully employed such arrays to study microRNA regulation during human monocyte differentiation as well as Salmonella infection. Besides well-known protagonists such as miR-146 or miR-155, we identified the up-regulation of miR-21, miR-222, miR-23b, miR-24, miR-27a as well as miR-29 upon monocyte differentiation or infection, respectively. CONCLUSIONS: The provided protocol for RT-qPCR arrays enables straight-forward microRNA expression analysis. It is fully automatable, compliant with the MIQE guidelines and can be completed in only 1 day. The application of these arrays revealed microRNAs that may mediate monocyte host defence mechanisms by regulating the TGF-ß signalling upon Salmonella infection. The introduced arrays are furthermore suited for customised quantification of any class of small non-coding RNAs as exemplified by snRNAs and thus provide a versatile tool for ubiquitous applications.


Subject(s)
MicroRNAs/metabolism , Monocytes/metabolism , Real-Time Polymerase Chain Reaction/methods , Salmonella/physiology , Cell Differentiation , Humans , MicroRNAs/chemistry , Monocytes/microbiology , Oligonucleotide Array Sequence Analysis , Real-Time Polymerase Chain Reaction/standards , Reference Standards , Salmonella Infections/genetics , Salmonella Infections/metabolism , Signal Transduction/genetics , Transforming Growth Factor beta/metabolism
13.
PLoS One ; 6(5): e20258, 2011.
Article in English | MEDLINE | ID: mdl-21629653

ABSTRACT

BACKGROUND: Many efforts have been made to understand basal mechanisms of mycobacterial infections. Macrophages are the first line of host immune defence to encounter and eradicate mycobacteria. Pathogenic species have evolved different mechanisms to evade host response, e.g. by influencing macrophage apoptotic pathways. However, the underlying molecular regulation is not fully understood. A new layer of eukaryotic regulation of gene expression is constituted by microRNAs. Therefore, we present a comprehensive study for identification of these key regulators and their targets in the context of host macrophage response to mycobacterial infections. METHODOLOGY/PRINCIPAL FINDINGS: We performed microRNA as well as mRNA expression analysis of human monocyte derived macrophages infected with several Mycobacterium avium hominissuis strains by means of microarrays as well as quantitative reverse transcription PCR (qRT-PCR). The data revealed the ability of all strains to inhibit apoptosis by transcriptional regulation of BCL2 family members. Accordingly, at 48 h after infection macrophages infected with all M. avium strains showed significantly decreased caspase 3 and 7 activities compared to the controls. Expression of let-7e, miR-29a and miR-886-5p were increased in response to mycobacterial infection at 48 h. The integrated analysis of microRNA and mRNA expression as well as target prediction pointed out regulative networks identifying caspase 3 and 7 as potential targets of let-7e and miR-29a, respectively. Consecutive reporter assays verified the regulation of caspase 3 and 7 by these microRNAs. CONCLUSIONS/SIGNIFICANCE: We show for the first time that mycobacterial infection of human macrophages causes a specific microRNA response. We furthermore outlined a regulatory network of potential interactions between microRNAs and mRNAs. This study provides a theoretical concept for unveiling how distinct mycobacteria could manipulate host cell response. In addition, functional relevance was confirmed by uncovering the control of major caspases 3 and 7 by let-7e and miR-29a, respectively.


Subject(s)
Macrophages/metabolism , Macrophages/microbiology , MicroRNAs/genetics , Mycobacterium avium/physiology , RNA, Messenger/genetics , Tuberculosis/genetics , 3' Untranslated Regions/genetics , Cells, Cultured , Humans , Oligonucleotide Array Sequence Analysis , Tuberculosis/microbiology
14.
BMC Genomics ; 11: 275, 2010 Apr 30.
Article in English | MEDLINE | ID: mdl-20433717

ABSTRACT

BACKGROUND: While more than 700 microRNAs (miRNAs) are known in human, a comparably low number has been identified in swine. Because of the close phylogenetic distance to humans, pigs serve as a suitable model for studying e.g. intestinal development or disease. Recent studies indicate that miRNAs are key regulators of intestinal development and their aberrant expression leads to intestinal malignancy. RESULTS: Here, we present the identification of hundreds of apparently novel miRNAs in the porcine intestine. MiRNAs were first identified by means of deep sequencing followed by miRNA precursor prediction using the miRDeep algorithm as well as searching for conserved miRNAs. Second, the porcine miRNAome along the entire intestine (duodenum, proximal and distal jejunum, ileum, ascending and transverse colon) was unraveled using customized miRNA microarrays based on the identified sequences as well as known porcine and human ones. In total, the expression of 332 intestinal miRNAs was discovered, of which 201 represented assumed novel porcine miRNAs. The identified hairpin forming precursors were in part organized in genomic clusters, and most of the precursors were located on chromosomes 3 and 1, respectively. Hierarchical clustering of the expression data revealed subsets of miRNAs that are specific to distinct parts of the intestine pointing to their impact on cellular signaling networks. CONCLUSIONS: In this study, we have applied a straight forward approach to decipher the porcine intestinal miRNAome for the first time in mammals using a piglet model. The high number of identified novel miRNAs in the porcine intestine points out their crucial role in intestinal function as shown by pathway analysis. On the other hand, the reported miRNAs may share orthologs in other mammals such as human still to be discovered.


Subject(s)
Gene Expression Profiling , Intestinal Mucosa/metabolism , MicroRNAs/genetics , Sus scrofa/genetics , Animals , Sequence Analysis, RNA
15.
Theriogenology ; 74(1): 45-59, 2010 Jul 01.
Article in English | MEDLINE | ID: mdl-20197198

ABSTRACT

Somatic cloning in cattle is associated with impaired embryo development, caused by inappropriate epigenetic reprogramming during embryogenesis; however, there is a paucity of data regarding gene expression at the critical elongation and peri-implantation stages. The objective of the present study was to identify genes differentially expressed in bovine cloned embryos at Day 17 of development (Day 0=day of nucleus transfer or IVF). Day 7 blastocysts (Hand Made Cloned or IVP) were transferred to recipient cattle and collected at Day 17. The efficiency of recovery of elongated embryos was similar, however cloned embryos elongated less than IVP embryos (91.8+/-45.8 vs. 174+/-50mm) and fewer had embryonic discs (63 vs. 83%). Qualitative and quantitative PCR detected expression of OCT4, NANOG, IFNtau, EOMES, FGF4, SOX2, and CDX2 in all IVP embryos. In most cloned embryos, NANOG and FGF4 were absent (verified by qPCR); NANOG, EOMES, and FGF4 were underexpressed, whereas IFNtau was overexpressed in cloned embryos. Based on qPCRs, other genes, i.e., SPARC, SNRB1, and CBPP22, were down-regulated in cloned embryos, whereas HSP70 and TDKP1 were overexpressed. In bovine microarrays, 47 genes (3.6%) were deregulated in cloned embryos, including several involved in trophoblast growth and differentiation. In conclusion, we inferred that these data were indicative of incomplete epigenetic reprogramming after cloning; this could lead to aberrant gene expression and subsequently early pregnancy loss. There was an apparent association between incomplete morphological elongation and aberrant reprogramming of a subset of genes critical for early embryonic development.


Subject(s)
Cattle/embryology , Cloning, Organism/veterinary , Embryo, Mammalian/metabolism , Fertilization in Vitro/veterinary , Gene Expression Regulation, Developmental/physiology , Nuclear Transfer Techniques/veterinary , Animals , Embryo Culture Techniques/veterinary , Embryo Transfer/veterinary , Embryonic Development/genetics , Epigenesis, Genetic/physiology , Female , Gestational Age , Oligonucleotide Array Sequence Analysis , Polymerase Chain Reaction , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL
...