Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Immunother Cancer ; 11(12)2023 12 14.
Article in English | MEDLINE | ID: mdl-38097342

ABSTRACT

BACKGROUND: One of the major challenges in chimeric antigen receptor (CAR)-T cell therapy for solid tumors is the potential for on-target off-tumor toxicity due to the expression of CAR tumor antigens in essential tissues and organs. Here, we describe a dual CAR NOT gate incorporating an inhibitory CAR (iCAR) recognizing HLA-A*02 ("A2") that enables effective treatment with a potent HER2 activating CAR (aCAR) in the context of A2 loss of heterozygosity (LOH). METHODS: A CAR-T cell screen was conducted to identify inhibitory domains derived from natural immune receptors (iDomains) to be used in a NOT gate, to kill A2- HER2+ lung cancer cell lines but spare A2+ HER2+ lung cancer cell-lines with high specificity. The extensive analysis of lead candidates included T-cell activation and killing, assays of reversibility and durability in sequential challenges, target cell specificity in mixed 3D spheroids and 2D cultures, and the characterization of CAR expression level and cell-trafficking. RESULTS: A leukocyte immunoglobulin-like receptor B1 (LIR1) iDomain iCAR was identified as most effective in regulating the cytotoxicity of a second generation HER2 aCAR. Target transfer experiments demonstrated that the 'on' and 'off' cell state of the LIR1 NOT gate CAR-T cell is both durable and reversible. Protection required iCAR signaling and was associated with reduced aCAR and iCAR surface expression. iCAR regulation was sufficient to generate high target specificity in a 3D adjacent spheroid assay designed to model the interface between clonal A2 LOH foci and normal tissue. However, we observed significant bystander killing of A2+ cells in admix culture through aCAR dependent and independent mechanisms. LIR1 NOT gate CAR-T cells conferred protection against H1703-A2+ tumors and high efficacy against H1703-A2- tumors in-vivo. We observed that the iCAR is inactive in A2+ donors due to cis-binding, but Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) knockout of HLA-A fully restored iCAR activity. CONCLUSIONS: We have preclinically validated an iCAR NOT gate technology broadly applicable for targeting HER2 expression in the context of A2 LOH. This approach is designed to prevent off tumor toxicity while allowing highly potent antitumor activity.


Subject(s)
Lung Neoplasms , T-Lymphocytes , Humans , Receptors, Antigen, T-Cell , Iron-Dextran Complex/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/therapy , Lung Neoplasms/metabolism , HLA-A Antigens
2.
Int J Cancer ; 151(1): 107-119, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35179790

ABSTRACT

Lynch Syndrome (LS) is an autosomal dominant genetic condition that causes a high risk of colorectal cancer. The hallmark of LS is genetic instability as a result of mismatch repair (MMR) deficiency, particularly in repetitive low complexity regions called microsatellites (MS). MLH1-/- mice deficient in MMR are prone to developing tumors in the colon, upon oral administration of dextran sodium sulfate (DSS), at a rate of more than 70%. Using this LS mouse model, we found a novel tumor neo-antigen from a deletion mutation of the coding MS in the SENP6 gene that prevented tumorigenesis or hindered tumor growth rate in immunized mice. This was accomplished via high throughput exome sequencing of DSS-induced colorectal tumors in the MLH1-/- mice and predicting the most highly immunogenic mutant gene products processed and presented as antigens in C57BL/6 MHC-I molecules. Throughout our study, we were able to prove the validity of the vaccine by analyzing the colorectal tumors in immunized DSS-treated mice using either our epitope, called Sp6D1, or an unrelated peptide as a negative control. Tumors developed in this context were found to be antigenic and Sp6D1-specific CD8+ tumor infiltrating lymphocytes were detected by flow cytometry and cytotoxic T lymphocytes (CTL) killing assays. Additionally, immunohistochemistry showed that tumor-adjacent tertiary lymphoid organs were a potentially significant source of CD8+ lymphocytes. Altogether, our results indicate that there may be a protective effect to patients carrying LS mutations through the induction of a peptide-specific CTL response from the use of neoepitope vaccination.


Subject(s)
Colorectal Neoplasms, Hereditary Nonpolyposis , Colorectal Neoplasms , Vaccines , Animals , Antigens, Neoplasm/genetics , Brain Neoplasms , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/prevention & control , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/prevention & control , Cysteine Endopeptidases/genetics , DNA Mismatch Repair/genetics , Humans , Mice , Mice, Inbred C57BL , Microsatellite Instability , MutL Protein Homolog 1/genetics , Neoplastic Syndromes, Hereditary
3.
Eur J Immunol ; 51(6): 1505-1518, 2021 06.
Article in English | MEDLINE | ID: mdl-33835499

ABSTRACT

A T-cell receptor (TCR) with optimal avidity to a tumor antigen can be used to redirect T cells to eradicate cancer cells via adoptive cell transfer. Cancer testis antigens (CTAs) are attractive targets because they are expressed in the testis, which is immune-privileged, and in the tumor. However, CTAs are self-antigens and natural TCRs to CTAs have low affinity/avidity due to central tolerance. We previously described a method of directed evolution of TCR avidity using somatic hypermutation. In this study, we made several improvements to this method and enhanced the avidity of the hT27 TCR, which is specific for the cancer testis antigen HLA-A2-MAGE-A1278-286 . We identified eight point mutations with varying degrees of improved avidity. Human T cells transduced with TCRs containing these mutations displayed enhanced tetramer binding, IFN-γ and IL2 production, and cytotoxicity. Most of the mutations have retained specificity, except for one mutant with extremely high avidity. We demonstrate that somatic hypermutation is capable of optimizing avidity of clinically relevant TCRs for immunotherapy.


Subject(s)
Cancer Vaccines/immunology , Immunotherapy, Adoptive/methods , Neoplasm Proteins/immunology , Peptide Fragments/immunology , Receptors, Antigen, T-Cell/genetics , T-Lymphocytes/immunology , Cells, Cultured , Central Tolerance , Cytotoxicity, Immunologic , HLA-A2 Antigen/metabolism , Humans , Interferon-gamma/metabolism , Lymphocyte Activation , Point Mutation/genetics , Protein Binding , Receptors, Antigen, T-Cell/metabolism , Somatic Hypermutation, Immunoglobulin , T-Lymphocytes/transplantation
4.
Int J Cancer ; 145(10): 2816-2826, 2019 11 15.
Article in English | MEDLINE | ID: mdl-31381134

ABSTRACT

Adoptive transfer of T cells that have been genetically modified to express an antitumor T-cell receptor (TCR) is a potent immunotherapy, but only if TCR avidity is sufficiently high. Endogenous TCRs specific to shared (self) tumor-associated antigens (TAAs) have low affinity due to central tolerance. Therefore, for effective therapy, anti-TAA TCRs with higher and optimal avidity must be generated. Here, we describe a new in vitro system for directed evolution of TCR avidity using somatic hypermutation (SHM), a mechanism used in nature by B cells for antibody optimization. We identified 44 point mutations to the Pmel-1 TCR, specific for the H-2Db -gp10025-33 melanoma antigen. Primary T cells transduced with TCRs containing two or three of these mutations had enhanced activity in vitro. Furthermore, the triple-mutant TCR improved in vivo therapy of tumor-bearing mice, which exhibited improved survival, smaller tumors and delayed or no relapse. TCR avidity maturation by SHM may be an effective strategy to improve cancer immunotherapy.


Subject(s)
Directed Molecular Evolution/methods , Melanoma, Experimental/therapy , Receptors, Antigen, T-Cell/genetics , Skin Neoplasms/therapy , gp100 Melanoma Antigen/immunology , Animals , Cell Line, Tumor , HEK293 Cells , Histocompatibility Antigen H-2D , Humans , Immunotherapy, Adoptive/methods , Melanoma, Experimental/immunology , Mice , Mice, Transgenic , Mutagenesis, Site-Directed/methods , Peptides/immunology , Point Mutation , Proof of Concept Study , Receptors, Antigen, T-Cell/immunology , Skin Neoplasms/immunology
5.
Int J Cancer ; 144(4): 909-921, 2019 02 15.
Article in English | MEDLINE | ID: mdl-30106470

ABSTRACT

For many years, clinicians and scientists attempt to develop methods to stimulate the immune system to target malignant cells. Recent data suggest that effective cancer vaccination requires combination immunotherapies to overcome tumor immune evasion. Through presentation of both MHC-I and II molecules, DCs-based vaccine platforms are effective in generating detectable CD4 and CD8 T cell responses against tumor-associated antigens. Several platforms include DC transfection with mRNA of the desired tumor antigen. These DCs are then delivered to the host and elicit an immune response against the antigen of interest. We have recently established an mRNA genetic platform which induced specific CD8+ cytotoxic T cell response by DC vaccination against melanoma. In our study, an MHC-II mRNA DCs vaccine platform was developed to activate CD4+ T cells and to enhance the anti-tumor response. The invariant chain (Ii) was modified and the semi-peptide CLIP was replaced with an MHC-II binding peptide sequences of melanoma antigens. These chimeric MHC-II constructs are presented by DCs and induce proliferation of tumor specific CD4+ T cells. When administered in combination with the MHC-I platform into tumor bearing mice, these constructs were able to inhibit tumor growth, and improve mouse survival. Deciphering the immunological mechanism of action, we observed an efficient CTLs killing in addition to higher levels of Th1 and Th2 subsets in the groups immunized with a combination of the MHC-I and MHC-II constructs. These universal constructs can be applied in multiple combinations and offer an attractive opportunity to improve cancer treatment.


Subject(s)
Antigens, Differentiation, B-Lymphocyte/immunology , Cancer Vaccines/immunology , Histocompatibility Antigens Class II/immunology , Melanoma, Experimental/immunology , Animals , Antigens, Neoplasm/genetics , Antigens, Neoplasm/immunology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cancer Vaccines/administration & dosage , Cell Line, Tumor , Dendritic Cells/immunology , Dendritic Cells/metabolism , Disease Progression , Immunotherapy/methods , Melanoma, Experimental/genetics , Melanoma, Experimental/therapy , Mice, Inbred C57BL , Mice, Transgenic , Survival Analysis , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/metabolism
6.
Oncoimmunology ; 7(7): e1445457, 2018.
Article in English | MEDLINE | ID: mdl-29900058

ABSTRACT

Despite melanoma immunogenicity and remarkable therapeutic effects of negative immune checkpoint inhibitors, a significant fraction of patients does not respond to current treatments. This could be due to limitations in tumor immunogenicity and profound immunosuppression in the melanoma microenvironment. Moreover, insufficient tumor antigen processing and presentation by dendritic cells (DC) may hamper the development of tumor-specific T cells. Using two genetically engineered mouse melanoma models (RET and BRAFV600E transgenic mice), in which checkpoint inhibitor therapy alone is not efficacious, we performed proof-of-concept studies with an improved, multivalent DC vaccination strategy based on our recently developed genetic mRNA cancer vaccines. The in vivo expression of multiple chimeric MHC class I receptors allows a simultaneous presentation of several melanoma-associated shared antigens tyrosinase related protein (TRP)-1, tyrosinase, human glycoprotein 100 and TRP-2. The DC vaccine induced a significantly improved survival in both transgenic mouse models. Vaccinated melanoma-bearing mice displayed an increased CD8 T cell reactivity indicated by a higher IFN-γ production and an upregulation of activation marker expression along with an attenuated immunosuppressive pattern of myeloid-derived suppressor cells (MDSC) and regulatory T cells (Treg). The combination of DC vaccination with ultra-low doses of paclitaxel or anti-PD-1 antibodies resulted in further prolongation of mouse survival associated with a stronger reduction of MDSC and Treg immunosuppressive phenotype. Our data suggest that an improved multivalent DC vaccine based on shared tumor antigens induces potent anti-tumor effects and could be combined with checkpoint inhibitors or targeting immunosuppressive cells to further improve their therapeutic efficiency.

7.
Immunol Cell Biol ; 96(3): 284-297, 2018 03.
Article in English | MEDLINE | ID: mdl-29356071

ABSTRACT

Inflammation plays pivotal roles in different stages of tumor development. Screening for predisposing genetic abnormalities and understanding the roles these genes play in the crosstalk between immune and cancer cells will provide new targets for cancer therapy and prevention. The interferon inducible transmembrane (IFITM) genes are involved in pathogenesis of the gastro-intestinal tract. We aimed at delineating the role of IFITM3 in colonic epithelial homeostasis, inflammation and colitis-associated tumorigenesis using IFITM3-deficient mice. Chemical induction of colitis in IFITM3-deficient mice results in significantly increased clinical signs of inflammation and induction of invasive tumorigenesis. Bone marrow transplantation showed that cells of the hematopoietic system are responsible for colitis deterioration. In these mice, impaired cytokine expression skewed inflammatory response toward pathogenic Th17 with reduced expression of the anti-inflammatory cytokine IL10 during the recovery phase. Intriguingly, mice lacking the entire IFITM locus developed spontaneous chronic colitis from the age of 14 weeks. Sequencing the 16S rRNA of naïve mice lacking IFITM3 gene, or the entire locus containing five IFITM genes, revealed these mice had significant bacterial differences from their wild-type littermates. Our novel results provide strong evidence for the essential role of IFITM genes in ameliorating colitis and colitis-associated tumorigenesis.


Subject(s)
Carcinogenesis/genetics , Carcinogenesis/pathology , Colitis/immunology , Colitis/microbiology , Immunity , Inflammation/genetics , Membrane Proteins/genetics , Microbiota , Animals , Colitis/genetics , Colitis/pathology , Colon/pathology , Dextran Sulfate , Disease Models, Animal , Disease Progression , Disease Susceptibility , Hematopoiesis , Immunity/genetics , Membrane Proteins/deficiency , Mice, Inbred C57BL , Mice, Knockout , Microbiota/genetics , Myeloid Cells/pathology
8.
Oncoimmunology ; 5(6): e1160183, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27471629

ABSTRACT

Malignant melanoma is characterized by a rapid progression, metastasis to distant organs and resistance to chemo and radiotherapy. Although melanoma is capable of eliciting an immune response, the disease progresses and the overall results of immunotherapeutic clinical studies are not satisfactory. Recently, we have developed a novel genetic platform for improving an induction of peptide-specific CD8(+) T cells by dendritic cell (DC) based on membrane-anchored ß2-microglobulin (ß2m) linked to a selected antigenic peptide at the N-terminus and to the cytosolic domain of TLR4 at the C-terminus. In vitro transcribed mRNA transfection of antigen-presenting cells (APCs) resulted in an efficient coupling of peptide presentation and cell activation. In this research, we utilize the chimeric platform to induce an immune response in ret transgenic mice that spontaneously develop malignant skin melanoma and to examine its effect on the overall survival of tumor-bearing mice. Following immunization with chimeric construct system, we observe a significantly prolonged survival of tumor-bearing mice as compared to the control group. Moreover, we see elevations in the frequency of CD62L(hi)CD44(hi) central and CD62L(lo)CD44(hi) effector memory CD8(+) T-cell subsets. Importantly, we do not observe any changes in frequencies of regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) in the vaccinated groups. Our data suggest that this novel vaccination approach could be efficiently applied for the immunotherapy of malignant melanoma.

9.
Mol Ther ; 23(8): 1391-1400, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25997427

ABSTRACT

Recently, we have developed a novel genetic platform for improving dendritic cell (DC) induction of peptide-specific CD8 T cells, based on membrane-anchored ß2-microglobulin (ß2m) linked to a selected antigenic peptide at its N-terminus and to the cytosolic domain of toll-like receptor (TLR)4 C-terminally. In vitro transcribed mRNA transfection of antigen presenting cells resulted in polypeptides that efficiently coupled peptide presentation to cellular activation. In the present study, we evaluated the immunogenicity of such constructs in mRNA-transfected immature murine bone marrow-derived DCs. We show that the encoded peptide ß2m-TLR4 products were expressed at the cell surface up to 72 hours and stimulated the maturation of DCs. In vivo, these DCs prompted efficient peptide-specific T-cell activation and target cell killing which were superior to those induced by peptide-loaded, LPS-stimulated DCs. This superiority was also evident in the ability to protect mice from tumor progression following the administration of B16F10.9 melanoma cells and to inhibit the development of pre-established B16F10.9 tumors. Our results provide evidence that the products of two recombinant genes encoding for peptide-hß2m-TLR4 and peptide-hß2m-K(b) expressed from exogenous mRNA can cooperate to couple Major Histocompatibility Complex (MHC-I) peptide presentation to TLR-mediated signaling, offering a safe, economical and highly versatile genetic platform for a novel category of CTL-inducing vaccines.


Subject(s)
Dendritic Cells/cytology , Histocompatibility Antigens Class I/metabolism , Peptides/chemistry , RNA, Messenger/metabolism , Toll-Like Receptor 4/metabolism , beta 2-Microglobulin/metabolism , Animals , Antigen Presentation/immunology , Antigen-Presenting Cells/cytology , Antigens, Neoplasm/chemistry , Antineoplastic Agents/chemistry , Bone Marrow Cells/cytology , Cancer Vaccines/immunology , Cell Membrane/metabolism , Cloning, Molecular , Culture Media , Cytosol/metabolism , Female , Humans , Lipopolysaccharides/chemistry , Melanoma, Experimental , Mice , Mice, Inbred C57BL , Protein Structure, Tertiary , Signal Transduction
10.
PLoS One ; 8(2): e55583, 2013.
Article in English | MEDLINE | ID: mdl-23383339

ABSTRACT

Identification and quantification of immunogenic peptides and tumor-derived epitopes presented on MHC-I molecules are essential for basic studies and vaccines generation. Although lymphocytes derived from transgenic mice can serve as sensitive detectors of processes of antigen presentation and recognition, they are not always available. The use of cell lines might be extremely useful. In this study, we generated a lacZ inducible CD8⁺ hybridoma (BUSA14) capable of recognizing both human and mouse gp10025₋33 melanoma antigens presented on dendritic and tumor cell lines. This hybridoma expresses a variety of membranal T cell markers and secretes IL-2 and TNFα. Thus, BUSA14 offers a quantifiable, cheap and straightforward tool for studying peptide presentation by MHC-I molecules on the cell surface.


Subject(s)
CD8-Positive T-Lymphocytes/cytology , Histocompatibility Antigens Class I/metabolism , Hybridomas/metabolism , gp100 Melanoma Antigen/metabolism , Animals , Cell Line, Tumor , Dendritic Cells/metabolism , Flow Cytometry , Humans , Hybridomas/cytology , Interleukin-2/metabolism , Lac Operon , Mice , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...