Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell Endocrinol ; 317(1-2): 25-30, 2010 Apr 12.
Article in English | MEDLINE | ID: mdl-20026378

ABSTRACT

Myostatin is a catabolic regulator of skeletal muscle mass. The purpose of this study was to determine the effect of resistance training for 8 weeks in conjunction with creatine supplementation on muscle strength, lean body mass, and serum levels of myostatin and growth and differentiation factor-associated serum protein-1 (GASP-1). In a double-blinded design 27 healthy male subjects (23.42+/-2.2 years) were assigned to control (CON), resistance training+placebo (RT+PL) and resistance training+creatine supplementation (RT+CR) groups. The protocol consisted of 3 days per week of training for 8 weeks, each session including three sets of 8-10 repetitions at 60-70% of 1 RM for whole-body exercise. Blood sampling, muscular strength testing and body composition analysis (full body DEXA) were performed at 0, 4th and 8th weeks. Myostatin and GASP-1 was measured. Resistance training caused significant decrease in serum levels of myostatin and increase in that of GASP-1. Creatine supplementation in conjunction with resistance training lead to greater decreases in serum myostatin (p<0.05), but had not additional effect on GASP-1 (p>0.05). The effects of resistance training on serum levels of myostatin and GASP-1, may explain the increased muscle mass that is amplified by creatine supplementation.


Subject(s)
Creatine/administration & dosage , Creatine/pharmacology , Myostatin/blood , Proteins/metabolism , Resistance Training , Vesicular Transport Proteins/blood , Administration, Oral , Body Composition/drug effects , Creatine/urine , Diet , Dietary Supplements , Humans , Intercellular Signaling Peptides and Proteins , Male , Muscle Strength/drug effects , Young Adult
2.
Int J Oncol ; 8(6): 1189-93, 1996 Jun.
Article in English | MEDLINE | ID: mdl-21544481

ABSTRACT

A colorimetric technique was used to investigate some aspects of multidrug resistant (MDR)-induced cell lines. Continuous contact of the inducing agent with cells was necessary for MDR induction and this was followed by a series of phases i.e., a selection phase (ESP) lasted up to 6 days, a conditioning phase (CP) lasted up to 14 days and an expansion phase (EP) lasted up to 7 days. Gene transfection to correct missing MHC class I antigens on the Fen cell line did not affect cell behaviour. Of particular interest was the finding that the withdrawal of the MDR inducing agent did not reverse MDR phenotype immediately.

SELECTION OF CITATIONS
SEARCH DETAIL
...