Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 12534, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37532835

ABSTRACT

In this research, the feasibility study of revamping of simulated moving bed for paraxylene separation in ELUXYL process to produce meta-xylene using industrial Ba-faujasite exchanged adsorbent by changing operating condition (temperature and pressure) were examined experimentally and theoretically. Two different mixed-xylene feed cases (with and without presence of para-xylene) were considered. Different sets of temperature and pressure were evaluated with the help of equilibrium and dynamic experiments to obtain optimum operating condition in a favor of separation of meta-xylene. Results confirm that in the presence of para-xylene in a feed, selectivity of the adsorbent could not change towards meta-xylene. But, in the absence of para in some pressure and temperature meta-xylene was more selective than ortho and ethylbenzene. Finally, by the means of statistical experimental design method the results of all experiments were compered and an optimum temperature and pressure were found. Breakthrough experiment in optimum condition showed MX/OX and MX/EB selectivity as 1.83 and 1.15, respectively. Furthermore, the design and simulation of the real industrial SMB plant was performed in Aspen Chromatography and HYSYS software to evaluate the real performance of MX separation. Simulation results showed the final purification in SMB plant can be reached to 83.91%. At the end, for the aim of promoting purity by considering extra distillation towers the purity of meta-xylene was achieved by 96%. The economical investigation showed that by considering 700$/ton for feed supplied, the process can be satisfactory from economical point of view.

2.
J Nanosci Nanotechnol ; 14(9): 6841-7, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25924339

ABSTRACT

In the present study, Mo/Al2O3 catalyst was prepared using impregnation method. Then it was promoted with Ni ions to produce Ni-Mo/Al2O3 catalyst. The structures of the catalysts were studied using X-ray diffraction (XRD), Energy dispersive X-ray (EDAX), Brunauer-Emmett-Teller (BET), X-ray photoelectron spectroscopy (XPS), CO chemisorption, temperature programmed reduction of hydrogen (H2-TPR) and scanning electron microscope (SEM) techniques. Catalytic performances of the two catalysts were investigated in a fixed-bed reactor for RWGS reaction. The results indicated that addition of nickel promoter to Mo/Al2O3 catalyst enhances its activity. It is reasonable for the electron deficient state of the Ni species and existence of NiMoO4 phase to possess high activity in RWGS reaction. Stability test of Ni-Mo/Al2O3 catalyst was carried out in a fixed bed reactor and a high CO2 conversion for 60 h time on stream was demonstrated. This study introduces a new catalyst, Ni-Mo/Al2O3, with high activity and stability for RWGS reaction.

3.
Bioresour Technol ; 131: 555-9, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23415940

ABSTRACT

In this study, chitosan and nano-chitosan were used as flocculants agents for harvesting microalga Nannochloropsis sp. chitosan was modified to nano-chitosan by crosslinking with sodium tripolyphosphate. The effects of type and dosage of flocculants and the pH of the culture were investigated on biomass recovery. Optimum dosages for both bio-flocculants were found. The results showed that the dosage of flocculant consumption decreases by 40% and biomass recovery increases by 9% when nano-chitosan instead of chitosan is used as flocculant agent. Also, the recycled water from the harvesting process was reused which increases the growth of microalgae by about 7%. Finally, the cost analysis of harvesting process showed the feasibility of using nano-chitosan as flocculation agent.


Subject(s)
Batch Cell Culture Techniques/methods , Bioreactors/microbiology , Chitosan/chemistry , Microalgae/growth & development , Microalgae/isolation & purification , Nanostructures/chemistry , Cell Proliferation , Cell Survival
SELECTION OF CITATIONS
SEARCH DETAIL
...