Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 2650, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38302664

ABSTRACT

High-performance lead-free Barium Zirconium Titanate (BZT) based ceramics have emerged as a potential candidate for applications in energy storage, catalysis for electro chemical energy conversion and energy harvesting devices as presented in this work. In the present study hybrid microwave sintered BZT are studied for dielectric, ferroelectric and phase transition properties. BZT ceramic exhibits tetragonal structure as confirmed by the Retvield refinement studies. XPS studies confirms the elemental composition of BZT and presence of Zr. Polarization versus electric field hysteresis loops confirms the ferroelectric behaviour of BZT ceramic. Encouragingly, the BZT showed a moderate energy storage efficiency of 30.7 % and relatively good electro chemical energy conversion (HER). Excellent catalytic activity observed for BZT electrode in acid medium with low Tafel slope 77 mV dec-1. Furthermore, electrospun nanofibers made of PVDF-HFP and BZT are used to make flexible piezoelectric nano generators (PENGs). FTIR studies show that the 16 wt% BZT composite ink exhibits a higher electroactive beta phase. The optimized open-circuit voltage and short circuit current of the flexible PENG exhibits 7Vpp and 750 nA under an applied force of 3N. Thus, flexible and self-powered BZT PENGs are alternative source of energy due to its reliability, affordability and environmental-friendly nature.

2.
Materials (Basel) ; 14(17)2021 Aug 27.
Article in English | MEDLINE | ID: mdl-34500963

ABSTRACT

Developing inexpensive and rapid fabrication methods for high efficiency thermoelectric alloys is a crucial challenge for the thermoelectric industry, especially for energy conversion applications. Here, we fabricated large amounts of p-type Cu0.07Bi0.5Sb1.5Te3 alloys, using water atomization to control its microstructure and improve thermoelectric performance by optimizing its initial powder size. All the water atomized powders were sieved with different aperture sizes, of 32-75 µm, 75-125 µm, 125-200 µm, and <200 µm, and subsequently consolidated using hot pressing at 490 °C. The grain sizes were found to increase with increasing powder particle size, which also increased carrier mobility due to improved carrier transport. The maximum electrical conductivity of 1457.33 Ω-1 cm-1 was obtained for the 125-200 µm samples due to their large grain sizes and subsequent high mobility. The Seebeck coefficient slightly increased with decreasing particle size due to scattering of carriers at fine grain boundaries. The higher power factor values of 4.20, 4.22 × 10-3 W/mk2 were, respectively, obtained for large powder specimens, such as 125-200 µm and 75-125 µm, due to their higher electrical conductivity. In addition, thermal conductivity increased with increasing particle size due to the improvement in carriers and phonons transport. The 75-125 µm powder specimen exhibited a relatively high thermoelectric figure of merit, ZT of 1.257 due to this higher electric conductivity.

SELECTION OF CITATIONS
SEARCH DETAIL
...