Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Antioxidants (Basel) ; 11(8)2022 Aug 22.
Article in English | MEDLINE | ID: mdl-36009347

ABSTRACT

Plants coevolved with their antioxidant defense systems, which detoxify and adjust levels of reactive oxygen species (ROS) under multiple plant stresses. We performed whole-genome identification of ascorbate peroxidase (APX) and catalase (CAT) families in cultivated and wild soybeans. In cultivated and wild soybean genomes, we identified 11 and 10 APX genes, respectively, whereas the numbers of identified CAT genes were four in each species. Comparative phylogenetic analysis revealed more homology among cultivated and wild soybeans relative to other legumes. Exon/intron structure, motif and synteny blocks are conserved in cultivated and wild species. According to the Ka/Ks value, purifying selection is a major force for evolution of these gene families in wild soybean; however, the APX gene family was evolved by both positive and purifying selection in cultivated soybean. Segmental duplication was a major factor involved in the expansion of APX and CAT genes. Expression patterns revealed that APX and CAT genes are differentially expressed across fourteen different soybean tissues under water deficit (WD), heat stress (HS) and combined drought plus heat stress (WD + HS). Altogether, the current study provides broad insights into these gene families in soybeans. Our results indicate that APX and CAT gene families modulate multiple stress response in soybeans.

2.
Antioxidants (Basel) ; 11(3)2022 Feb 25.
Article in English | MEDLINE | ID: mdl-35326109

ABSTRACT

Plant stresses causing accumulation of reactive oxidative species (ROS) are scavenged by effective antioxidant defense systems. Therefore, the present study performed genome-wide identification of superoxide dismutase (SOD) and glutathione peroxidase (GPX) gene families in cultivated and wild soybeans, and 11 other legume species. We identified a total of 101 and 95 genes of SOD and GPX, respectively, across thirteen legume species. The highest numbers of SODs and GPXs were identified in cultivated (Glycine max) and wild (Glycine soja). A comparative phylogenetic study revealed highest homology among the SODs and GPXs of cultivated and wild soybeans relative to other legumes. The exon/intron structure, motif and synteny blocks were conserved in both soybean species. According to Ka/Ks, purifying the selection played the major evolutionary role in these gene families, and segmental duplication are major driving force for SODs and GPXs expansion. In addition, the qRT-PCR analysis of the G. max and G. soja SOD and GPX genes revealed significant differential expression of these genes in response to oxidative, drought and salinity stresses in root tissue. In conclusion, our study provides new insights for the evolution of SOD and GPX gene families in legumes, and provides resources for further functional characterization of these genes for multiple stresses.

3.
Physiol Mol Biol Plants ; 25(4): 807-820, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31402811

ABSTRACT

Cotton is classified as moderately salt tolerant crop with salinity threshold level of 7.7 dS m-1. Salinity is a serious threat for cotton growth, yield and fiber quality. The sensitivity to salt stress depends upon growth stage and type of salt. Understanding of cotton response to salinity, its resistance mechanism and looking into management techniques may assist in formulating strategies to improve cotton performance under saline condition. The studies have showed that germination, emergence and seedling stages are more sensitive to salinity stress as compared to later stages. Salt stress results in delayed flowering, less fruiting positions, fruit shedding and reduced boll weight which ultimately affect seed cotton yield. Depressed activities of metabolic enzymes viz: acidic invertase, alkaline invertase and sucrose phophate synthase lead to fiber quality deterioration in salinity. Excessive sodium exclusion or its compartmentation is the main adaptive mechanism in cotton under salt stress. Up regulation of enzymatic and non-enzymatic antioxidants genes offer important adaptive potential to develop salt tolerant cotton varieties. Seed priming is also an effective approach for improving cotton germination in saline soils. Intra and inter variation in cotton germplasm could be used to develop salt tolerant varieties with the aid of marker assisted selection. Furthermore, transgenic approach could be the promising option for enhancing cotton production under saline condition. It is suggested that future research may be carried out with the combination of conventional and advance molecular technology to develop salt tolerant cultivars.

SELECTION OF CITATIONS
SEARCH DETAIL
...