Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Clin Chem ; 75: 71-97, 2016.
Article in English | MEDLINE | ID: mdl-27346617

ABSTRACT

Iron is an essential element for several metabolic pathways and physiological processes. The maintenance of iron homeostasis within the human body requires a dynamic and highly sophisticated interplay of several proteins, as states of iron deficiency or excess are both potentially deleterious to health. Among these is plasma transferrin, which is central to iron metabolism not only through iron transport between body tissues in a soluble nontoxic form but also through its protective scavenger role in sequestering free toxic iron. The transferrin saturation (TSAT), an index that takes into account both plasma iron and its main transport protein, is considered an important biochemical marker of body iron status. Its increasing use in many health systems is due to the increased availability of measurement methods, such as calorimetry, turbidimetry, nephelometry, and immunochemistry to estimate its value. However, despite its frequent use in clinical practice to detect states of iron deficiency or iron overload, careful attention should be paid to the inherent limitations of the test especially in certain settings such as inflammation in order to avoid misinterpretation and erroneous conclusions. Beyond its usual clinical use, an emerging body of evidence has linked TSAT levels to major clinical outcomes such as cardiovascular mortality. This has the potential to extend the utility of TSAT index to risk stratification and prognostication. However, most of the current evidence is mainly driven by observational studies where the risk of residual confounding cannot be fully eliminated. Indeed, future efforts are required to fully explore this capability in well-designed clinical trials or prospective large-scale cohorts.


Subject(s)
Biomarkers/metabolism , Iron Deficiencies , Iron/metabolism , Transferrin/metabolism , Anemia, Iron-Deficiency/diagnosis , Animals , Biomarkers/analysis , Humans , Prognosis , Transferrin/analysis
2.
J Contam Hydrol ; 99(1-4): 49-67, 2008 Jul 29.
Article in English | MEDLINE | ID: mdl-18486990

ABSTRACT

Twenty one of 118 irrigation water wells in the shallow (25-30 m thick) Mississippi River Valley alluvial aquifer in the Bayou Bartholomew watershed, southeastern Arkansas had arsenic (As) concentrations (<0.5 to 77 microg/L) exceeding 10 microg/L. Sediment and groundwater samples were collected and analyzed from the sites of the highest, median, and lowest concentrations of As in groundwater in the alluvial aquifers located at Jefferson County, Arkansas. A traditional five-step sequential extraction was performed to differentiate the exchangeable, carbonate, amorphous Fe and Mn oxide, organic, and hot HNO(3)-leachable fraction of As and other compounds in sediments. The Chao reagent (0.25 M hydroxylamine hydrochloride in 0.25 M HCl) removes amorphous Fe and Mn oxides and oxyhydroxides (present as coatings on grains and amorphous minerals) by reductive dissolution and is a measure of reducible Fe and Mn in sediments. The hot HNO(3) extraction removes mostly crystalline metal oxides and all other labile forms of As. Significant total As (20%) is complexed with amorphous Fe and Mn oxides in sediments. Arsenic abundance is not significant in carbonates or organic matter. Significant (40-70 microg/kg) exchangeable As is only present at shallow depth (0-1 m below ground surface). Arsenic is positively correlated to Fe extracted by Chao reagent (r=0.83) and hot HNO(3) (r=0.85). Arsenic extracted by Chao reagent decreases significantly with depth as compared to As extracted by hot HNO(3). Fe (II)/Fe (the ratio of Fe concentration in the extracts of Chao reagent and hot HNO(3)) is positively correlated (r=0.76) to As extracted from Chao reagent. Although Fe (II)/Fe increases with depth, the relative abundance of reducible Fe decreases noticeably with depth. The amount of reducible Fe, as well as As complexed to amorphous Fe and Mn oxides and oxyhydroxides decreases with depth. Possible explanations for the decrease in reducible Fe and its complexed As with depth include historic flushing of As and Fe from hydrous ferric oxides (HFO) by microbially-mediated reductive dissolution and aging of HFO to crystalline phases. Hydrogeochemical data suggests that the groundwater in the area falls in the mildly reducing (suboxic) to relatively highly reducing (anoxic) zone, and points to reductive dissolution of HFO as the dominant As release mechanism. Spatial variability of gypsum solubility and simultaneous SO(4)(2-) reduction with co-precipitation of As and sulfide is an important limiting process controlling the concentration of As in groundwater in the area.


Subject(s)
Arsenic/analysis , Environmental Monitoring , Geologic Sediments/analysis , Rivers , Water Pollutants, Chemical/analysis , Wetlands , Arkansas , Humic Substances/analysis , Models, Theoretical , Oxidation-Reduction , Solubility , Water Supply/analysis , Water Supply/standards
SELECTION OF CITATIONS
SEARCH DETAIL
...