Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Graph Model ; 77: 143-152, 2017 10.
Article in English | MEDLINE | ID: mdl-28858642

ABSTRACT

Today, the global greenhouse effect of carbon dioxide (CO2) is a serious environmental problem. Therefore, developing efficient methods for CO2 capturing and conversion to valuable chemicals is a great challenge. The aim of the present study is to investigate the catalytic activity of Pt- or Ni-doped graphene for the hydrogenation of CO2 by a hydrogen molecule. To gain a deeper insight into the catalytic mechanism of this reaction, the reliable density functional theory calculations are performed. The adsorption energies, geometric parameters, reaction barriers, and thermodynamic properties are calculated using the M06-2X density functional. Two reaction mechanisms are proposed for the hydrogenation of CO2. In the bimolecular mechanism, the reaction proceeds in two steps, initiating by the co-adsorption of CO2 and H2 molecules over the surface, followed by the formation of a OCOH intermediate by the transfer of H atom of H2 toward O atom of CO2. In the next step, formic acid is produced as a favorable product with the formation of CH bond. In our proposed termolecular mechanism, however, H2 molecule is directly activated by the two pre-adsorbed CO2 molecules. The predicted activation energy for the formation of the OCOH intermediate in the bimolecular mechanism is 20.8 and 47.9kcalmol-1 over Pt- and Ni-doped graphene, respectively. On the contrary, the formation of the first formic acid in the termolecular mechanism is found as the rate-determining step over these surfaces, with an activation energy of 28.8 and 45.5kcal/mol. Our findings demonstrate that compared to the Ni-doped graphene, the Pt-doped surface has a relatively higher catalytic activity towards the CO2 reduction. These theoretical results could be useful in practical applications for removal and transformation of CO2 to value-added chemical products.


Subject(s)
Catalysis , Graphite/chemistry , Models, Molecular , Thermodynamics , Carbon Dioxide/chemistry , Hydrogen/chemistry , Hydrogenation , Nickel/chemistry , Oxygen/chemistry , Platinum/chemistry
2.
J Mol Graph Model ; 69: 8-16, 2016 09.
Article in English | MEDLINE | ID: mdl-27525814

ABSTRACT

Using density functional theory calculations, the probable CO oxidation reaction mechanisms are investigated over Al- or Si-decorated graphene oxide (GO). The equilibrium geometry and electronic structure of these metal decorated-GOs along with the O2/CO adsorption configurations are studied in detail. The relatively large adsorption energies reveal that both Al and Si atoms can disperse on GO quite stably without clustering problem. Hence, both Al- and Si-decorated GOs are stable enough to be utilized in catalytic oxidation of CO by molecular O2. The two possible reaction pathways proposed for the oxidation of CO with O2 molecule are as follows: O2+CO→CO2+Oads and CO+Oads→CO2. The estimated energy barriers of the first oxidation reaction on Si-decorated GOs, following the Eley-Rideal (ER) reaction, are lower than that on Al-decorated ones. This is most likely due to the larger atomic charge on the Si atom than the Al one, which tends to stabilize the corresponding transition state structure. The results of this study can be useful for better understanding the chemical properties of Al- and Si-decorated GOs, and are valuable for the development of an automobile catalytic converter in order to remove the toxic CO molecule.


Subject(s)
Aluminum/chemistry , Carbon Monoxide/chemistry , Graphite/chemistry , Models, Molecular , Oxygen/chemistry , Silicon/chemistry , Adsorption , Oxidation-Reduction , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...