Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 9(3): e14024, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36915508

ABSTRACT

Aims: Cardiotoxicity is associated with doxorubicin (DOX), an effective anticancer drug. Apigenin has cardioprotective properties; it may be employed as a capping and reducing agent in synthesizing gold nanoparticles (AuNPs). This study examined the cardioprotective impact of AuNPs synthesized with apigenin (Api) in DOX-induced cardiotoxicity (DIC). Main methods: Api-AuNPs were synthesized in a single pot without needing additional reagents for reducing gold ions or stabilizing the NPs. The cytotoxicity of Api-AuNPs on H9c2 heart cells was subsequently determined using the MTT assay. In the animal investigation, 40 male rats were randomly assigned to one of four groups: control, cardiotoxicity (DOX), DOX treated with apigenin (DOX + Api), or DOX treated with Api-AuNPs (DOX + Api-AuNPs). To examine heart function, echocardiography was conducted. Blood samples were obtained to evaluate injury indicators (Lactate dehydrogenase (LDH), creatine kinase MB (CK-MB), Cardiac Troponin I (cTn-I), Alanine transaminase (ALT), and Aspartate transaminase (AST)). The heart was removed under general anesthetic, weighed, and preserved in formalin solution. Six micrometer-thick cardiac tissue sections were stained with hematoxylin, eosin (H&E), and immunohistochemistry to identify cardiomyocyte apoptotic markers (Bax, Bcl-2, and caspase3). Key findings: Api-AuNPs have an average size of 21.4 ± 11.6 nm and are stable in physiological environments. Api-AuNPs therapy substantially reduced body and heart weight loss compared to the DOX group. Injury indicators were reduced dramatically by Api-AuNPs treatment. Api-AuNPs inhibited myocardial apoptosis via modulating Bax, caspase3, and Bcl-2 and ameliorating tissue damage caused by DOX. Significance: Api-AuNPs' anti-apoptotic activities provide cardioprotection against DIC. It has the potential to reduce cardiotoxicity and boost myocardial performance.

2.
Clin Exp Pharmacol Physiol ; 49(1): 70-83, 2022 01.
Article in English | MEDLINE | ID: mdl-34449914

ABSTRACT

Doxorubicin (DOX) is one of the most widely used chemotherapy agents; however, its nonselective effect causes cardiotoxicity. Curcumin (Cur), a well known dietary polyphenol, could exert a significant cardioprotective effect, but the biological application of this substance is limited by its chemical insolubility. To overcome this limitation, in this study, we synthesised gold nanoparticles based on Cur (Cur-AuNPs). Ultraviolet-visible (UV-Vis) absorbance spectroscopy and transmission electron microscopy (TEM) were performed for the characterisation of synthesised NPs, and Fourier transform infrared (FTIR) spectroscopy were applied to detect Cur on the surface of AuNPs. Its cytotoxicity effect on H9c2 cells was evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The biological efficacy of Cur-AuNPs was assessed after acute cardiotoxicity induction in BALB/c mice with DOX injection. The serum biomarkers, myocardial histological changes, and cardiomyocyte apoptosis were then measured. The results revealed that the heart protection by Cur-AuNPs is more effective than Cur alone. Heart protective effect of Cur-AuNPs was evident both in the short-term (24 hours) and long-term (14 days) study. The results of Cur-AuNPs400 after 24 hours of toxicity induction displayed the reduction of the cardiac injury serum biomarkers (LDH, CK-MB, cTnI, ADT, and ALT) and apoptotic proteins (Bax and Caspase-3), as well as increase of Bcl-2 anti-apoptotic proteins without any sign of interfibrillar haemorrhage and intercellular spaces in the heart tissue microscopic images. Our long-term study signifies that Cur-AuNPs400 in DOX-intoxicated mice could successfully inhibit body and heart weight loss in comparison to DOX group.


Subject(s)
Apoptosis/drug effects , Cardiotoxicity/drug therapy , Cardiotoxins/toxicity , Curcumin/therapeutic use , Doxorubicin/toxicity , Metal Nanoparticles , Animals , Cardiotoxicity/etiology , Cardiotoxins/antagonists & inhibitors , Doxorubicin/antagonists & inhibitors , Gold , Male , Mice , Mice, Inbred BALB C , Microscopy, Electron, Transmission , Photoelectron Spectroscopy , Spectroscopy, Fourier Transform Infrared
3.
Nanoscale ; 13(36): 15445-15463, 2021 Sep 23.
Article in English | MEDLINE | ID: mdl-34505619

ABSTRACT

Excessive inflammatory responses in wounds are characterized by the presence of high levels of pro-inflammatory M1 macrophages rather than pro-healing M2 macrophages, which leads to delayed wound healing. Macrophage reprogramming from the M1 to M2 phenotype through knockdown of interferon regulatory factor 5 (irf5) has emerged as a possible therapeutic strategy. While downregulation of irf5 could be achieved by siRNA, it very much depends on successful intracellular delivery by suitable siRNA carriers. Here, we report on highly stable selenium-based layer-by-layer (LBL) nanocomplexes (NCs) for siRNA delivery with polyethyleneimine (PEI-LBL-NCs) as the final polymer layer. PEI-LBL-NCs showed good protection of siRNA with only 40% siRNA release in a buffer of pH = 8.5 after 72 h or in simulated wound fluid after 4 h. PEI-LBL-NCs also proved to be able to transfect RAW 264.7 cells with irf5-siRNA, resulting in successful reprogramming to the M2 phenotype as evidenced by a 3.4 and 2.6 times decrease in NOS-2 and TNF-α mRNA expression levels, respectively. Moreover, irf5-siRNA transfected cells exhibited a 2.5 times increase of the healing mediator Arg-1 and a 64% increase in expression of the M2 cell surface marker CD206+. Incubation of fibroblast cells with conditioned medium isolated from irf5-siRNA transfected RAW 264.7 cells resulted in accelerated wound healing in an in vitro scratch assay. These results show that irf5-siRNA loaded PEI-LBL-NCs are a promising therapeutic approach to tune macrophage polarization for improved wound healing.


Subject(s)
Macrophage Activation , Macrophages , Phenotype , RNA, Small Interfering/genetics , Wound Healing/genetics
4.
Front Mol Biosci ; 8: 639184, 2021.
Article in English | MEDLINE | ID: mdl-33959633

ABSTRACT

Nanotechnology has made an important contribution to oncology in recent years, especially for drug delivery. While many different nano-delivery systems have been suggested for cancer therapy, selenium nanoparticles (SeNPs) are particularly promising anticancer drug carriers as their core material offers interesting synergistic effects to cancer cells. Se compounds can exert cytotoxic effects by acting as pro-oxidants that alter cellular redox homeostasis, eventually leading to apoptosis induction in many kinds of cancer cells. Herein, we report on the design and synthesis of novel layer-by-layer Se-based nanocomplexes (LBL-Se-NCs) as carriers of small interfering RNA (siRNA) for combined gene silencing and apoptosis induction in cancer cells. The LBL-Se-NCs were prepared using a straightforward electrostatic assembly of siRNA and chitosan (CS) on the solid core of the SeNP. In this study, we started by investigating the colloidal stability and protection of the complexed siRNA. The results show that CS not only functioned as an anchoring layer for siRNA, but also provided colloidal stability for at least 20 days in different media when CS was applied as a third layer. The release study revealed that siRNA remained better associated with LBL-Se-NCs, with only a release of 35% after 7 days, as compared to CS-NCs with a siRNA release of 100% after 48 h, making the LBL nanocarrier an excellent candidate as an off-the-shelf formulation. When applied to H1299 cells, it was found that they can selectively induce around 32% apoptosis, while significantly less apoptosis (5.6%) was induced in NIH/3T3 normal cells. At the same time, they were capable of efficiently inducing siRNA downregulation (35%) without loss of activity 7 days post-synthesis. We conclude that LBL-Se-NCs are promising siRNA carriers with enhanced stability and with a dual mode of action against cancer cells.

5.
Exp Physiol ; 106(2): 544-554, 2021 02.
Article in English | MEDLINE | ID: mdl-33258520

ABSTRACT

NEW FINDINGS: What is the central question of this study? Is mesenchymal stem cell-conditioned medium capable of improving the pathological alterations of ovalbumin-induced asthma in mice? What is the main finding and its importance? Our study indicated that human amniotic membrane mesenchymal stem cell-conditioned medium is capable of modulating inflammation, fibrosis, oxidative stress and the pathological consequences of ovalbumin-induced allergic asthma in mice. ABSTRACT: Paracrine factors secreted by mesenchymal stem cells (MSCs) have immunomodulatory, anti-inflammatory and antifibrotic properties, and the conditioned medium (CM) of these cells might have functional capabilities. We examined the effects of human amniotic membrane MSC-CM (hAM-MSC-CM) on ovalbumin (OVA)-induced asthma. Forty male Balb/c mice were randomly divided into the following four groups: control; OVA (sensitized and challenged with OVA); OVA+CM (sensitized and challenged with OVA and treated with hAM-MSC-CM); and OVA+Placebo (sensitized and challenged with OVA and treated with placebo). Forty-eight hours after the last challenge, serum and bronchoalveolar lavage fluid samples were collected and used for evaluation of inflammatory factors and cells, respectively. Lung tissue sections were stained with Haematoxylin and Eosin or Masson's Trichrome to evaluate pathological changes, and oxidative stress was assessed in fresh lung tissues. Treatment with hAM-MSC-CM significantly hindered histopathological changes and fibrosis and reduced the total cell count and the percentage of eosinophils and neutrophils in bronchoalveolar lavage fluid. Furthermore, it reduced serum levels of immunoglobulin E, interleukin-4, transforming growth factor-ß and lung malondialdehyde. It also increased serum levels of interferon-γ and interleukin-10, in addition to the enzymatic activity of glutathione peroxidase, catalase and superoxide dismutase in lung tissue in comparison to the OVA and OVA+Placebo groups. This study showed that administration of hAM-MSC-CM can improve pathological conditions, such as inflammation, fibrosis and oxidative stress, in OVA-induced allergic asthma.


Subject(s)
Asthma/metabolism , Culture Media, Conditioned , Inflammation/metabolism , Lung/metabolism , Mesenchymal Stem Cells/metabolism , Amnion/metabolism , Amnion/pathology , Animals , Asthma/pathology , Disease Models, Animal , Fibrosis/metabolism , Fibrosis/pathology , Humans , Inflammation/pathology , Lung/pathology , Male , Mesenchymal Stem Cells/pathology , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...