Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38920068

ABSTRACT

In the realm of environmentally conscious materials science, the integration of silver nanoparticles (AgNPs) with biodegradable polymers to form innovative nanocomposites has sparked notable discourse and research. This review delves comprehensively into the synthesis, properties, and environmental implications of said AgNPs/biodegradable polymer nanocomposites. Leveraging the unique physicochemical attributes of silver nanoparticles, these nanocomposites are portrayed as promising platforms for delivery, sensing, and antimicrobial applications. The nanocomposites made of AgNPs with biodegradable polymers, however, extend beyond utility, demonstrating a commitment to minimizing ecological impact. Contrary to traditional non-degradable polymers that litter our environments and oceans, these green alternatives yield lesser waste, reduce energy use, and limit the emission of volatile organic compounds, thereby aligning with global efforts towards sustainability. Our review strives to substantiate the environmental viability of these nanocomposites, whilst elaborating on their diverse commercial potential.

2.
Front Med (Lausanne) ; 8: 720647, 2021.
Article in English | MEDLINE | ID: mdl-34568377

ABSTRACT

Background and Aim: The predominant species of the Enterococcus, Enterococcus faecalis (E. faecalis) and Enterococcus faecium (E. faecium) cause great variety of infections. Therefore, the expansion of antimicrobial resistance in the Enterococcus is one of the most important global concerns. This study was conducted to investigate the prevalence of resistance to linezolid, tigecycline, and daptomycin among enterococcal strains isolated from human clinical specimens worldwide. Methods: Several databases including Web of Science, EMBASE, and Medline (via PubMed), were carefully searched and reviewed for original research articles available in databases and published between 2000 and 2020. A total of 114 studies worldwide that address E. faecalis and E. faecium resistance to linezolid, tigecycline, and daptomycin were analyzed by STATA software. Results: The overall prevalence of antibiotic-resistant E. faecalis and E. faecium was reported to be 0.9 and 0.6%, respectively. E. faecalis and E. faecium were more resistant to the linezolid (2.2%) and daptomycin (9%), respectively. The prevalence of tigecyline-resistant E. facium (1%) strains was higher than E. faecalis strains (0.3%). Accordingly, the prevalence of linezolid-resistant E. faecalis was higher in Asia (2.8%), while linezolid-resistant E. faecium was higher in the America (3.4%). Regarding tigecycline-resistance, a higher prevalence of E. faecalis (0.4%) and E. faecium (3.9%) was reported in Europe. Conclusion: In conclusion, this meta-analysis shows that there is an emerging resistance in Enterococcus strains. Despite the rising resistance of enterococci to antibiotics, our results demonstrate that tigecycline, daptomycin, and linezolid can still be used for the treatment of enterococcal infections worldwide.

3.
Infect Drug Resist ; 13: 2477-2484, 2020.
Article in English | MEDLINE | ID: mdl-32765020

ABSTRACT

BACKGROUND: Pseudomonas aeruginosa is an opportunistic pathogen that causes serious nosocomial infections, especially in immunodeficient patients and cystic fibrosis, cancer, and burned individuals. The biofilm that plays an important role in the virulence of P. aeruginosa is under the regulation of quorum sensing and two-component regulatory systems of bacteria. Curcumin, an active phenolic extract of turmeric has shown an inhibitory effect on the biofilm formation of some pathogenic bacteria. Thus, the present study aims to evaluate the effect of Nano-Curcumin on the expression of major regulatory genes involved in biofilm formation of P. aeruginosa. MATERIALS AND METHODS: The biofilm formation of P. aeruginosa ATCC 10145 was assessed in the presence of 15, 20, and 25 µg/mL concentrations of Nano-Curcumin using the microplate titer method. The effect of Nano-Curcumin on the expression level of regulatory genes were determined by relative reverse transcriptase-realtime PCR. RESULTS: In the absence of Nano-Curcumin, P. aeruginosa strain ATCC 10145 strongly produced biofilm (3+) and in the presence of 15 and 20 µg/mL, biofilm formation was reduced to moderate (2+) and weak biofilm producer (1+), respectively. Nano-Curcumin at a concentration of 25µg/mL inhibited biofilm formation in P. aeruginosa. The expression of regulatory genes was not affected by biofilm inhibitory concentrations of Nano-Curcumin. CONCLUSION: The antibiofilm mechanism of Curcumin is not related to the downregulation of regulatory systems of P. aeruginosa and probably it prevents the formation of a complete biofilm structure.

SELECTION OF CITATIONS
SEARCH DETAIL
...