Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 12381, 2022 07 20.
Article in English | MEDLINE | ID: mdl-35858982

ABSTRACT

The zinc sulfide/copper oxide-carbon nanotube nanocomposite (ZnS/CuO-CNT) was fabricated by using an in-situ hydrothermal synthesis method and was used for simultaneous ultrasound-assisted adsorptive removal of a binary mixture of ponceau 4R (P4R) and tartrazine (TA) acid food dyes from contaminated water. The as-synthesized ZnS/CuO-CNT was described by FESEM, XRD, FTIR, BET, and zeta potential analysis. The results included nested network morphology, high purity with the crystalline structure, oxygen-containing functional groups, mesoporous/micropores texture with cumulate interspace, specific surface area of 106.54 m2 g-1, and zero-point charge (pHzpc) of 5.3. In adsorption experiments, the simultaneous effect of main independent variables, including solution pH, adsorbent dosage, concentration of each dye, temperature, and sonication time on the removal efficiency of dyes was studied systematically using the central composite design (CCD) method based on response surface methodology (RSM). Also, the second-order multivariate equation was presented to determine the relationship between the removal efficiencies of P4R and AT dyes and six independent effective variables. The high correlation coefficient (R2 ≥ 0.99), significant p-value (P < 0.0001), and non-significant lack-of-fit (P > 0.05) showed the high accuracy, and validity of the proposed model to predict the removal efficiency of P4R and TA acid food dyes. The experimental removal efficiency for P4R and TA dyes was found to be 98.45 ± 2.54, and 99.21 ± 2.23, respectively. Also, the Langmuir maximum adsorption capacity for P4R and TA dyes was determined to be 190.1 mg g-1 and 183.5 mg g-1, respectively. Finally, the adsorbent's reusability was tested for six periods and could be reused repeatedly without significant reduction in adsorption performance.


Subject(s)
Coloring Agents , Zinc Oxide , Adsorption , Coloring Agents/chemistry , Copper , Water
2.
Article in English | MEDLINE | ID: mdl-33743514

ABSTRACT

In the present study, a magnetic molecularly imprinted polymer (MMIP) was synthesized for the extraction of harmaline from Peganum harmala by dispersive solid-phase microextraction (DSPME). The MMIP for selective and intelligent extraction of harmaline with excellent functionality and high selectivity was synthesized using the sol-gel method with functionalized superparamagnetic core-shell nanoparticles, ethylene glycol dimethacrylate (EDMA) as a cross-linker, methacrylic acid (MAA) as a functional monomer, and 2,2-azobisisobutyronitrile (AIBN) as a porogen. To study the properties and morphology of the coated polymer, FT-IR spectroscopy, FESEM, TEM images, and VSM were used. The DSPME-HPLC-UV equipment was used to quantify and analyze the data obtained from harmaline extraction. In this research, the efficiency of the synthesized polymer in harmaline extraction was modeled and optimized using the response surface methodology based on central composite design (RSM-CCD). In addition, for modeling the isotherm of harmaline sorption by the MMIP, Langmuir and Freundlich isotherm equations were used. The obtained results showed that the extraction of harmaline with the MMIP was well described with Freundlich isotherm. The results of the validation of the method showed that the measurement of harmaline in the concentration range of 1.0-4000 ng mL-1 followed a linear relationship (R2 = 9986.0). Moreover, the accuracy or repeatability index (% RSD) was determined to be < 10, and the LOQ and LOD values were 0.526 and 0.158 ng mL-1, respectively. The results of this study showed that the DSPME technique by using the synthesized MMIP as an effective sorbent with high efficiency and capacity could be utilized for pre-concentration and extraction of harmaline from real and complex samples.


Subject(s)
Chromatography, High Pressure Liquid/methods , Harmaline , Magnetite Nanoparticles/chemistry , Molecularly Imprinted Polymers/chemistry , Peganum/chemistry , Harmaline/analysis , Harmaline/chemistry , Harmaline/isolation & purification , Limit of Detection , Linear Models , Molecular Imprinting/methods , Plant Extracts/chemistry , Reproducibility of Results , Solid Phase Microextraction/methods , Sonication/methods
3.
Int J Biol Macromol ; 152: 913-921, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32092426

ABSTRACT

In this study, the starch-capped zinc selenide nanoparticles loaded on activated carbon (ST-Zn-Se-NPs-AC) composite was fabricated, and then it was used for removing Basic Fuchsin (BF) dye from aqueous solution. The ST-Zn-Se-NPs-AC composite was characterized by FE-SEM, UV-Vis, EDS, and XRD techniques. The removal percentage dependence to different variables such as initial BF concentration, pH, dosage of adsorbent, and time of sonication was investigated by Central Composite Design (CCD) under Response Surface Methodology (RSM). The quadratic model between the independent and dependent variables was predicted. A good agreement between the experimental and predicted data was achieved by the predicted model that showed the performance of the predicted model for predicting of real optimum points, and it was successfully employed to remove BF from aqueous media. The maximum removal percentage of 99.34% was obtained by the predicted model under the optimum conditions (15 mg L-1 of initial BF concentration, pH of 7.0, 12 mg of ST-Zn-Se-NPs-AC, and 6 min of sonication time), which was very close to the experimental value (99.00%). Moreover, the data were efficiently fitted by Langmuir model, and the saturation adsorption capacity (Qmax) at 25 °C for BF was discovered to be 222.72 mg g-1.


Subject(s)
Charcoal/chemistry , Models, Chemical , Nanocomposites/chemistry , Nanoparticles/chemistry , Selenium Compounds/chemistry , Starch/chemistry , Ultrasonic Waves , Zinc Compounds/chemistry , Adsorption , Kinetics
4.
Ultrason Sonochem ; 40(Pt A): 373-382, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28946436

ABSTRACT

Copper sulfide nanorods loaded on activated carbon (CuS-NRs-AC) was synthesized and used for simultaneous ultrasound-assisted adsorption of malachite green (MG) and Pb2+ ions from aqueous solution. Following characterization of CuS-NRs-AC were investigated by SEM, EDX, TEM and XRD, the effects of pH (2.0-10), amount of adsorbent (0.003-0.011g), MG concentration (5-25mgL-1), Pb2+ concentration (3-15mgL-1) and sonication time (1.5-7.5min) and their interactions on responses were investigated by central composite design (CCD) and response surface methodology. According to desirability function on the Design Expert optimum removal (99.4%±1.0 for MG and 68.3±1.8 for Pb2+ions) was obtained at pH 6.0, 0.009g CuS-NRs-AC, 6.0min mixing by sonication and 15 and 6mgL-1 for MG and Pb2+ ions, respectively. High determination coefficient (R2>0.995), Pred-R2-value (>0.920) and Adju-R2-value (>0.985) all are good indication of best agreement between the experimental and design modelling. The adsorption kinetics follows the pseudo-second order model and adsorption isotherm follows the Langmuir model with maximum adsorption capacity of 145.98 and 47.892mgg-1 for MG and Pb2+ ions, respectively. This adsorbent over short contact time is good choice for simultaneous removal of large content of both MG and Pb2+ ions from wastewater sample.

5.
Ultrason Sonochem ; 36: 236-245, 2017 May.
Article in English | MEDLINE | ID: mdl-28069206

ABSTRACT

Present study is devoted on the efficient application of Sn (O, S)-NPs -AC for simultaneous sonicated accelerated adsorption of some dyes from single and multi-components systems. Sn (O, S) nanoparticles characterization by FESEM, EDX, EDX mapping and XRD revel its nano size structure with high purity of good crystallinity. Present adsorbent due to its nano spherical shape particles with approximate diameter of 40-60nm seems to be highly effective in this regard. The effects of five variables viz. pH (3.5-9.5), 0.010-0.028g of adsorbent and 0.5-6.5min mixing by sonication is good and practical conditions for well and expected adsorption of MB and CV over concentration range of 3-15mgL-1. Combination of response surface methodology (RSM) based on central composite design (CCD) and subsequent of analysis of variance (ANOVA) and t-test statistics were used to test the significance of the independent variables and their interactions. Regression analysis reveal that experimental data with high repeatability and efficiency well represented by second-order polynomial model with coefficient of determination value of 0.9988 and 0.9976 for MB and CV, respectively following conditions like pH 8.0, 0.016g adsorbent, 15mgL-1 of both dyes 4min sonication time is proportional with achievement of experimental removal percentage of 99.80% of MB and 99.87% of CV in batch experiment. Evaluation and estimation of adsorption data with Langmuir and Freundlich isotherm well justify the results based on their correlation coefficient and error analysis confirm that Langmuir model is good model with adsorption capacity of 109.17 and 115.34mgg-1 in single system and 95.69 and 102.99mgg-1 in binary system for MB and CV, respectively. MB and CV kinetic and rate of adsorption well fitted by pseudo-second order equation both in single and binary systems and experimental results denote more and favorable adsorption of CV than respective value in single system. The pseudo-second-order rate constant k2 in binary system larger than single system.

SELECTION OF CITATIONS
SEARCH DETAIL
...