Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 52(47): 17747-17751, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37970917

ABSTRACT

Dy3+ doped SrLaGaO4 exhibits unusually slow relaxation of magnetization determined by two widely separated excited Kramers doublets with a second remagnetization energy barrier of 223 cm-1. This value considerably exceeds that for analogous Ca(Y,Dy)AlO4 in spite of the apparently enlarged Dy3+ coordination sphere.

2.
Micromachines (Basel) ; 14(8)2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37630165

ABSTRACT

A novel approach to surface modification, which consists of the adsorption of microgel-enzyme complexes preformed in solution, is highlighted. Accordingly, the microgel-enzyme complexes were formed due to the electrostatic interaction of the oppositely charged interacting components, that is, a cationic poly(N-isopropylacrylamide)-based microgel and glucose oxidase taken as a model enzyme. The spontaneous adsorption of the prepared microgel-enzyme complexes, examined by means of quartz crystal microbalance with dissipation monitoring and atomic force microscopy, was observed, resulting in the formation of well-adhered microgel-enzyme coatings. Further, the preformed microgel-enzyme complexes were adsorbed onto the modified graphite-based screen-printed electrodes, and their enzymatic responses were determined by means of amperometry, demonstrating a remarkable analytical performance toward the quantification of ß-D-glucose in terms of high sensitivity (0.0162 A × M-1 × cm-2), a low limit of detection (1 µM), and an expanded linear range (1-2000 µM). The fabricated microgel-enzyme biosensor constructs were found to be very stable against manifold-repeated measurements. Finally, the pH- or salt-induced release of glucose oxidase from the adsorbed preformed microgel-enzyme complexes was demonstrated. The findings obtained for the microgel-enzyme coatings prepared via adsorption of the preformed microgel-enzyme complexes were compared to those found for the microgel-enzyme coatings fabricated via a previously exploited two-stage sequential adsorption, which includes the adsorption of the microgel first, followed by the electrostatic binding of glucose oxidase by the adsorbed microgel.

3.
Biosensors (Basel) ; 12(8)2022 Aug 11.
Article in English | MEDLINE | ID: mdl-36005026

ABSTRACT

A stimuli-responsive (pH- and thermoresponsive) micelle-forming diblock copolymer, poly(1,2-butadiene)290-block-poly(N,N-dimethylaminoethyl methacrylate)240 (PB-b-PDMAEMA), was used as a polymer template for the in situ synthesis of silver nanoparticles (AgNPs) through Ag+ complexation with PDMAEMA blocks, followed by the reduction of the bound Ag+ with sodium borohydride. A successful synthesis of the AgNPs on a PB-b-PDMAEMA micellar template was confirmed by means of UV-Vis spectroscopy and transmission electron microscopy, wherein the shape and size of the AgNPs were determined. A phase transition of the polymer matrix in the AgNPs/PB-b-PDMAEMA metallopolymer hybrids, which results from a collapse and aggregation of PDMAEMA blocks, was manifested by changes in the transmittance of their aqueous solutions as a function of temperature. A SERS reporting probe, 4-mercaptophenylboronic acid (4-MPBA), was used to demonstrate a laser-induced enhancement of the SERS signal observed under constant laser irradiation. The local heating of the AgNPs/PB-b-PDMAEMA sample in the laser spot is thought to be responsible for the triggered SERS effect, which is caused by the approaching of AgNPs and the generation of "hot spots" under a thermo-induced collapse and the aggregation of the PDMAEMA blocks of the polymer matrix. The triggered SERS effect depends on the time of a laser exposure and on the concentration of 4-MPBA. Possible mechanisms of the laser-induced heating for the AgNPs/PB-b-PDMAEMA metallopolymer hybrids are discussed.


Subject(s)
Metal Nanoparticles , Polymers , Lasers , Metal Nanoparticles/chemistry , Polymers/chemistry , Silver , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...