Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(19)2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37834058

ABSTRACT

Puberty is a critical developmental period of life characterized by marked physiological changes, including changes in the immune system and gut microbiota development. Exposure to inflammation induced by immune stressors during puberty has been found to stimulate central inflammation and lead to immune disturbance at distant sites from the gut; however, its enduring effects on gut immunity are not well explored. Therefore, in this study, we used a pubertal lipopolysaccharides (LPS)-induced inflammation mouse model to mimic pubertal exposure to inflammation and dysbiosis. We hypothesized that pubertal LPS-induced inflammation may cause long-term dysfunction in gut immunity by enduring dysregulation of inflammatory signaling and epigenetic changes, while prebiotic/probiotic intake may mitigate the gut immune system deregulation later in life. To this end, four-week-old female Balb/c mice were fed prebiotics/probiotics and exposed to LPS in the pubertal window. To better decipher the acute and enduring immunoprotective effects of biotic intake, we addressed the effect of treatment on interleukin (IL)-17 signaling related-cytokines and pathways. In addition, the effect of treatment on gut microbiota and epigenetic alterations, including changes in microRNA (miRNA) expression and DNA methylation, were studied. Our results revealed a significant dysregulation in selected cytokines, proteins, and miRNAs involved in key signaling pathways related to IL-17 production and function, including IL-17A and F, IL-6, IL-1ß, transforming growth factor-ß (TGF-ß), signal transducer and activator of transcription-3 (STAT3), p-STAT3, forkhead box O1 (FOXO1), and miR-145 in the small intestine of adult mice challenged with LPS during puberty. In contrast, dietary interventions mitigated the lasting adverse effects of LPS on gut immune function, partly through epigenetic mechanisms. A DNA methylation analysis demonstrated that enduring changes in gut immunity in adult mice might be linked to differentially methylated genes, including Lpb, Rorc, Runx1, Il17ra, Rac1, Ccl5, and Il10, involved in Th17 cell differentiation and IL-17 production and signaling. In addition, prebiotic administration prevented LPS-induced changes in the gut microbiota in pubertal mice. Together, these results indicate that following a healthy diet rich in prebiotics and probiotics is an optimal strategy for programming immune system function in the critical developmental windows of life and controlling inflammation later in life.


Subject(s)
Interleukin-17 , Shiitake Mushrooms , Mice , Animals , Female , Interleukin-17/metabolism , Shiitake Mushrooms/metabolism , Lipopolysaccharides/toxicity , Sexual Maturation , Prebiotics , Signal Transduction , Cytokines/metabolism , Inflammation , Epigenesis, Genetic
2.
Microorganisms ; 11(10)2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37894114

ABSTRACT

Gut immune system homeostasis is crucial to overall host health. Immune disturbance at the gut level may lead to systemic and distant sites' immune dysfunction. Probiotics and prebiotics consumption have been shown to improve gut microbiota composition and function and enhance gut immunity. In the current study, the immunomodulatory and anti-inflammatory effects of viable and heat-inactivated forms of the novel probiotic bacterium Rouxiella badensis subsp. acadiensis (Canan SV-53), as well as the prebiotic protocatechuic acid (PCA) derived from the fermentation of blueberry juice by SV-53, were examined. To this end, female Balb/c mice received probiotic (viable or heat-inactivated), prebiotic, or a mixture of viable probiotic and prebiotic in drinking water for three weeks. To better decipher the immunomodulatory effects of biotics intake, gut microbiota, gut mucosal immunity, T helper-17 (Th17) cell-related cytokines, and epigenetic modulation of Th17 cells were studied. In mice receiving viable SV-53 and PCA, a significant increase was noted in serum IgA levels and the number of IgA-producing B cells in the ileum. A significant reduction was observed in the concentrations of proinflammatory cytokines, including interleukin (IL)-17A, IL-6, and IL-23, and expression of two proinflammatory miRNAs, miR-223 and miR425, in treated groups. In addition, heat-inactivated SV-53 exerted immunomodulatory properties by elevating the IgA concentration in the serum and reducing IL-6 and IL-23 levels in the ileum. DNA methylation analysis revealed the role of heat-inactivated SV-53 in the epigenetic regulation of genes related to Th17 and IL-17 production and function, including Il6, Il17rc, Il9, Il11, Akt1, Ikbkg, Sgk1, Cblb, and Smad4. Taken together, these findings may reflect the potential role of the novel probiotic bacterium SV-53 and prebiotic PCA in improving gut immunity and homeostasis. Further studies are required to ascertain the beneficial effects of this novel bacterium in the inflammatory state.

3.
Nutrients ; 13(5)2021 Apr 30.
Article in English | MEDLINE | ID: mdl-33946303

ABSTRACT

Fermented plant foods are gaining wide interest worldwide as healthy foods due to their unique sensory features and their health-promoting potentials, such as antiobesity, antidiabetic, antihypertensive, and anticarcinogenic activities. Many fermented foods are a rich source of nutrients, phytochemicals, bioactive compounds, and probiotic microbes. The excellent biological activities of these functional foods, such as anti-inflammatory and immunomodulatory functions, are widely attributable to their high antioxidant content and lactic acid-producing bacteria (LAB). LAB contribute to the maintenance of a healthy gut microbiota composition and improvement of local and systemic immunity. Besides, antioxidant compounds are involved in several functional properties of fermented plant products by neutralizing free radicals, regulating antioxidant enzyme activities, reducing oxidative stress, ameliorating inflammatory responses, and enhancing immune system performance. Therefore, these products may protect against chronic inflammatory diseases, which are known as the leading cause of mortality worldwide. Given that a large body of evidence supports the role of fermented plant foods in health promotion and disease prevention, we aim to discuss the potential anti-inflammatory and immunomodulatory properties of selected fermented plant foods, including berries, cabbage, and soybean products, and their effects on gut microbiota.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Fermented Foods , Immunomodulation , Anti-Inflammatory Agents/chemistry , Humans
4.
Int J Mol Sci ; 22(7)2021 Mar 24.
Article in English | MEDLINE | ID: mdl-33805142

ABSTRACT

Alzheimer's disease (AD) is a debilitating neurological disorder, and currently, there is no cure for it. Several pathologic alterations have been described in the brain of AD patients, but the ultimate causative mechanisms of AD are still elusive. The classic hallmarks of AD, including amyloid plaques (Aß) and tau tangles (tau), are the most studied features of AD. Unfortunately, all the efforts targeting these pathologies have failed to show the desired efficacy in AD patients so far. Neuroinflammation and impaired autophagy are two other main known pathologies in AD. It has been reported that these pathologies exist in AD brain long before the emergence of any clinical manifestation of AD. Microglia are the main inflammatory cells in the brain and are considered by many researchers as the next hope for finding a viable therapeutic target in AD. Interestingly, it appears that the autophagy and mitophagy are also changed in these cells in AD. Inside the cells, autophagy and inflammation interact in a bidirectional manner. In the current review, we briefly discussed an overview on autophagy and mitophagy in AD and then provided a comprehensive discussion on the role of these pathways in microglia and their involvement in AD pathogenesis.


Subject(s)
Alzheimer Disease/pathology , Autophagy , Microglia/metabolism , Mitophagy , Amyloid beta-Peptides/metabolism , Animals , Brain/pathology , Complement System Proteins/metabolism , Humans , Inflammation , Mice , Mice, Transgenic , Mitochondria/metabolism , Neurodegenerative Diseases/pathology , Neurons/metabolism , Receptors, Fc/metabolism , Receptors, Scavenger/metabolism , tau Proteins/metabolism
5.
Cancer Lett ; 501: 200-209, 2021 03 31.
Article in English | MEDLINE | ID: mdl-33220334

ABSTRACT

Despite recent advances in cancer immunotherapy, there have been limitations in cancer treatment and patient survival due to a lack of antigen recognition and immunosuppressive tumor microenvironment. To overcome this issue, we have shown that miRNA modified tumor-derived Extracellular Vesicles (mt-EVs) would be an advantageous prospect since they are tumor specific and associated antigen sources which cause increase in maturation and antigen-presenting function of dendritic cells. Also, miRNAs are promising candidates for cancer therapy because of their ability to control several host immune subsets to respond against cancer cells as well as tumor microenvironment remodeling. Here, we report that mt-EVs containing tumor specific antigens loaded with miRNAs (Let-7i, miR-142 and, miR-155) could increase the survival rate of tumor-bearing mice and induce reduction in tumor growth. Importantly, the administration of mt-EVs elicited cytotoxic T cells with increasing in IFNγ and Granzyme B production ability. Notably, intramuscular (IM) injection of let7i, miR142-EVs had a significant effect on dendritic cell (DC) maturation and T cell activation along with tumor shrinkage. Collectively, our findings suggest that administration of miRNA containing EVs may be effective immunotherapy against solid tumors.


Subject(s)
Extracellular Vesicles/transplantation , Mammary Neoplasms, Experimental/therapy , MicroRNAs/genetics , Animals , Antigens, Neoplasm/genetics , Dendritic Cells/metabolism , Extracellular Vesicles/genetics , Female , Granzymes/metabolism , Injections, Intramuscular , Interferon-gamma/metabolism , Lymphocyte Activation , Mammary Neoplasms, Experimental/genetics , Mammary Neoplasms, Experimental/immunology , Mice , T-Lymphocytes/immunology , Tumor Microenvironment
6.
Int J Mol Sci ; 21(7)2020 Mar 25.
Article in English | MEDLINE | ID: mdl-32218162

ABSTRACT

Natural killer (NK) cell therapy is one of the most promising treatments for Glioblastoma Multiforme (GBM). However, this emerging technology is limited by the availability of sufficient numbers of fully functional cells. Here, we investigated the efficacy of NK cells that were expanded and treated by interleukin-2 (IL-2) and heat shock protein 70 (HSP70), both in vitro and in vivo. Proliferation and cytotoxicity assays were used to assess the functionality of NK cells in vitro, after which treated and naïve NK cells were administrated intracranially and systemically to compare the potential antitumor activities in our in vivo rat GBM models. In vitro assays provided strong evidence of NK cell efficacy against C6 tumor cells. In vivo tracking of NK cells showed efficient homing around and within the tumor site. Furthermore, significant amelioration of the tumor in rats treated with HSP70/Il-2-treated NK cells as compared to those subjected to nontreated NK cells, as confirmed by MRI, proved the efficacy of adoptive NK cell therapy. Moreover, results obtained with systemic injection confirmed migration of activated NK cells over the blood brain barrier and subsequent targeting of GBM tumor cells. Our data suggest that administration of HSP70/Il-2-treated NK cells may be a promising therapeutic approach to be considered in the treatment of GBM.


Subject(s)
Blood-Brain Barrier/drug effects , Glioblastoma/pathology , HSP70 Heat-Shock Proteins/pharmacology , Interleukin-2/pharmacology , Animals , Cell Line, Tumor , Coculture Techniques , Glioblastoma/metabolism , Immunophenotyping , Killer Cells, Natural/immunology , Male , Rats
7.
Front Immunol ; 11: 221, 2020.
Article in English | MEDLINE | ID: mdl-32210954

ABSTRACT

Exosomes are nano vesicles from the larger family named Extracellular Vesicle (EV)s which are released by various cells including tumor cells, mast cells, dendritic cells, B lymphocytes, neurons, adipocytes, endothelial cells, and epithelial cells. They are considerable messengers that can exchange proteins and genetic materials between the cells. Within the past decade, Tumor derived exosomes (TEX) have been emerged as important mediators in cancer initiation, progression and metastasis as well as host immune suppression and drug resistance. Although tumor derived exosomes consist of tumor antigens and several Heat Shock Proteins such as HSP70 and HSP90 to stimulate immune response against tumor cells, they contain inhibitory molecules like Fas ligand (Fas-L), Transforming Growth Factor Beta (TGF-ß) and Prostaglandin E2 (PGE2) leading to decrease the cytotoxicity and establish immunosuppressive tumor microenvironment (TME). To bypass this problem and enhance immune response, some macromolecules such as miRNAs, HSPs and activatory ligands have been recognized as potent immune inducers that could be used as anti-tumor agents to construct a nano sized tumor vaccine. Here, we discussed emerging engineered exosomes as a novel therapeutic strategy and considered the associated challenges.


Subject(s)
Extracellular Vesicles/metabolism , Immunotherapy/methods , Neoplasms/metabolism , Animals , Bioengineering , Carcinogenesis , Humans , Immune Tolerance , Neoplasm Metastasis , Neoplasms/immunology , Neoplasms/therapy , Tumor Microenvironment
8.
J Cell Physiol ; 234(12): 22493-22504, 2019 12.
Article in English | MEDLINE | ID: mdl-31120149

ABSTRACT

Glioblastoma multiforme (GBM) is a unique aggressive tumor and mostly develops in the brain, while rarely spreading out of the central nervous system. It is associated with a high mortality rate; despite tremendous efforts having been made for effective therapy, tumor recurrence occurs with high prevalence. To elucidate the mechanisms that lead to new drug discovery, animal models of tumor progression is one of the oldest and most beneficial approaches to not only investigating the aggressive nature of the tumor, but also improving preclinical research. It is also a useful tool for predicting novel therapies' effectiveness as well as side effects. However, there are concerns that must be considered, such as the heterogeneity of tumor, biological properties, pharma dynamic, and anatomic shapes of the models, which have to be similar to humans as much as possible. Although several methods and various species have been used for this approach, the real recapitulation of the human tumor has been left under discussion. The GBM model, which has been verified in this study, has been established by using the Rat C6 cell line. By exploiting bioinformatic tools, the similarities between aberrant gene expression and pathways have been predicted. In this regard, 610 common genes and a number of pathways have been detected. Moreover, while magnetic resonance imaging analysis enables us to compare tumor features between these two specious, pathological findings provides most of the human GBM characteristics. Therefore, the present study provides genomics, pathologic, and imaging evidence for showing the similarities between human and rat GBM models.


Subject(s)
Gene Expression Regulation, Neoplastic/physiology , Genomics , Glioblastoma/genetics , Glioblastoma/pathology , Animals , Cell Line, Tumor , Computational Biology , Down-Regulation , Humans , Neoplasms, Experimental , Protein Interaction Maps , Rats , Species Specificity , Transcriptome , Up-Regulation
9.
Drug Resist Updat ; 42: 35-45, 2019 01.
Article in English | MEDLINE | ID: mdl-30877905

ABSTRACT

Glioblastoma multiforme (GBM) is among the most incurable cancers. GBMs survival rate has not markedly improved, despite new radical surgery protocols, the introduction of new anticancer drugs, new treatment protocols, and advances in radiation techniques. The low efficacy of therapy, and short interval between remission and recurrence, could be attributed to the resistance of a small fraction of tumorigenic cells to treatment. The existence and importance of cancer stem cells (CSCs) is perceived by some as controversial. Experimental evidences suggest that the presence of therapy-resistant glioblastoma stem cells (GSCs) could explain tumor recurrence and metastasis. Some scientists, including most of the authors of this review, believe that GSCs are the driving force behind GBM relapses, whereas others however, question the existence of GSCs. Evidence has accumulated indicating that non-tumorigenic cancer cells with high heterogeneity, could undergo reprogramming and become GSCs. Hence, targeting GSCs as the "root cells" initiating malignancy has been proposed to eradicate this devastating disease. Most standard treatments fail to completely eradicate GSCs, which can then cause the recurrence of the disease. To effectively target GSCs, a comprehensive understanding of the biology of GSCs as well as the mechanisms by which these cells survive during treatment and develop into new tumor, is urgently needed. Herein, we provide an overview of the molecular features of GSCs, and elaborate how to facilitate their detection and efficient targeting for therapeutic interventions. We also discuss GBM classifications based on the molecular stem cell subtypes with a focus on potential therapeutic approaches.


Subject(s)
Antineoplastic Agents/therapeutic use , Glioblastoma/drug therapy , Glioblastoma/pathology , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/pathology , Humans , Neoplasm Metastasis/drug therapy , Neoplasm Metastasis/pathology , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/pathology
10.
J Cell Physiol ; 234(6): 8249-8258, 2019 06.
Article in English | MEDLINE | ID: mdl-30378105

ABSTRACT

Mesenchymal stromal cells (MSCs) can effectively contribute to tissue regeneration inside the inflammatory microenvironment mostly through modulating immune responses. MSC-derived extracellular vesicles (MSC-EVs) display immunoregulatory functions similar to parent cells. Interactions between MSC-EVs and immune cells make them an ideal therapeutic candidate for infectious, inflammatory, and autoimmune diseases. These properties of MSC-EVs have encouraged researchers to perform extensive studies on multiple factors that mediate MSC-EVs immunomodulatory effects. Investigation of proteins involved in the complex interplay of MSC-EVs and immune cells may help us to better understand their functions. Here, we performed a comprehensive proteomic analysis of MSC-EVs that was previously reported by ExoCarta database. A total of 938 proteins were identified as MSC-EV proteome using quantitative proteomics techniques. Kyoto Encyclopedia of Genes and Genomes analysis demonstrates that ECM-receptor interaction, focal adhesion, and disease-specific pathways are enriched in MSC-EVs. By detail analysis of proteins presence in immune system process, we found that expression of some cytokines, chemokines, and chemokine receptors such as IL10, HGF, LIF, CCL2, VEGFC, and CCL20, which leads to migration of MSC-EVs to injured sites, suppression of inflammation and promotion of regeneration in inflammatory and autoimmune diseases. Also, some chemoattractant proteins such as CXCL2, CXCL8, CXCL16, DEFA1, HERC5, and IFITM2 were found in MSC-EV proteome. They may actively recruit immune cells to the proximity of MSC or MSC-EVs, may result in boosting immune response under specific circumstances, and may have protective role in infectious diseases. In this review, we summarize available information about immunomodulation of MSC-EVs with particular emphasis on their proteomics analysis.


Subject(s)
Extracellular Vesicles/genetics , Immunity, Cellular/genetics , Inflammation/genetics , Cell Differentiation/genetics , Chemokines/genetics , Cytokines/genetics , Extracellular Vesicles/metabolism , Gene Expression Regulation/genetics , Humans , Immunity, Cellular/immunology , Immunomodulation/genetics , Inflammation/metabolism , Mesenchymal Stem Cells/metabolism , Proteomics , Receptors, Chemokine/genetics
11.
Curr Stem Cell Res Ther ; 12(8): 658-674, 2017.
Article in English | MEDLINE | ID: mdl-28969578

ABSTRACT

BACKGROUND: During the last two decades, a number of studies have been carried out on the application of regenerative medicine in the field of dermatology. OBJECTIVE: The aim of this research was to critically review the application of regenerative medicine in the field of dermatology. The next aim was to look in depth to see whether regenerative medicine strategies have a place in the future of wound healing in a clinical setting. More specifically, to see if these strategies would apply for burns and non-healing diabetic wounds. RESULTS: Billions of dollars have been spent worldwide on research in wound treatment and skin regeneration. Although a high number of clinical trials show promising results, there is still no commercially available treatment for use. In addition, the outcome data from the clinical trials, taking place throughout the world, are not published in a standardized manner. Standardization within clinical trials is required for: protocols, outcome, endpoint values, and length of follow-up. The lack of standardization makes it much more difficult to compare the data collected and the different types of treatment. CONCLUSION: Despite several promising results from research and early phase clinical studies, the treatment for wounds as well as skin regeneration is still considered as an unmet clinical need. However, in the past three years, more promising research has been approaching clinical trials; this could be the solution that clinicians have been waiting for. This is a multibillion dollar industry for which there should be enough incentive for researchers and industry to seek the solution.


Subject(s)
Burns/therapy , Diabetes Complications/therapy , Regenerative Medicine/methods , Skin/injuries , Wound Healing , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...