Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Biochem Biophys Res Commun ; 621: 116-121, 2022 09 17.
Article in English | MEDLINE | ID: mdl-35820281

ABSTRACT

METH and HIV Tat treatment results in increased oxidative stress which affects cellular metabolism and causes DNA damage in the treated microglia. Both, METH ± HIV Tat impair mitochondrial respiration, leading to dysfunction in bioenergetics and increased ROS in microglial cells. Our data indicate that mitochondrial dysfunction may be key to the METH and/or HIV Tat-induced neuropathology. METH and/or HIV Tat induced changes in the protein, lipid and nucleotide concentration in microglial cells were measured by Raman Spectroscopy, and we speculate that these fundamental molecular-cellular changes in microglial cells contribute to the neuropathology that is associated with METH abuse in HIV patients.


Subject(s)
HIV Infections , Methamphetamine , HIV Infections/metabolism , Humans , Methamphetamine/pharmacology , Mitochondria/metabolism , Spectrum Analysis, Raman , tat Gene Products, Human Immunodeficiency Virus/metabolism
2.
Cell Mol Biol Lett ; 27(1): 53, 2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35764935

ABSTRACT

BACKGROUND: Organoids, which are organs grown in a dish from stem or progenitor cells, model the structure and function of organs and can be used to define molecular events during organ formation, model human disease, assess drug responses, and perform grafting in vivo for regenerative medicine approaches. For therapeutic applications, there is a need for nondestructive methods to identify the differentiation state of unlabeled organoids in response to treatment with growth factors or pharmacologicals. METHODS: Using complex 3D submandibular salivary gland organoids developed from embryonic progenitor cells, which respond to EGF by proliferating and FGF2 by undergoing branching morphogenesis and proacinar differentiation, we developed Raman confocal microspectroscopy methods to define Raman signatures for each of these organoid states using both fixed and live organoids. RESULTS: Three separate quantitative comparisons, Raman spectral features, multivariate analysis, and machine learning, classified distinct organoid differentiation signatures and revealed that the Raman spectral signatures were predictive of organoid phenotype. CONCLUSIONS: As the organoids were unlabeled, intact, and hydrated at the time of imaging, Raman spectral fingerprints can be used to noninvasively distinguish between different organoid phenotypes for future applications in disease modeling, drug screening, and regenerative medicine.


Subject(s)
Organoids , Stem Cells , Cell Differentiation , Morphogenesis , Phenotype
3.
Vaccines (Basel) ; 9(7)2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34358137

ABSTRACT

The widespread use of combination antiretroviral therapy (cART) has led to the accelerated aging of the HIV-infected population, and these patients continue to have a range of mild to moderate HIV-associated neurocognitive disorders (HAND). Infection results in altered mitochondrial function. The HIV-1 viral protein Tat significantly alters mtDNA content and enhances oxidative stress in immune cells. Microglia are the immune cells of the central nervous system (CNS) that exhibit a significant mitotic potential and are thus susceptible to telomere shortening. HIV disrupts the normal interplay between microglia and neurons, thereby inducing neurodegeneration. HIV cART contributes to the inhibition of telomerase activity and premature telomere shortening in activated peripheral blood mononuclear cells (PBMC). However, limited information is available on the effect of cART on telomere length (TL) in microglia. Although it is well established that telomere shortening induces cell senescence and contributes to the development of age-related neuro-pathologies, the effect of HIV-Tat on telomere length in human microglial cells and its potential contribution to HAND are not well understood. It is speculated that in HAND intrinsic molecular mechanisms that control energy production underlie microglia-mediated neuronal injury. TL, telomerase and mtDNA expression were quantified in microglial cells using real time PCR. Cellular energetics were measured using the Seahorse assay. The changes in mitochondrial function were examined by Raman Spectroscopy. We have also examined TL in the PBMC obtained from HIV-1 infected rapid progressors (RP) on cART and those who were cART naïve, and observed a significant decrease in telomere length in RP on cART as compared to RP's who were cART naïve. We observed a significant decrease in telomerase activity, telomere length and mitochondrial function, and an increase in oxidative stress in human microglial cells treated with HIV Tat. Neurocognitive impairment in HIV disease may in part be due to accelerated neuro-pathogenesis in microglial cells, which is attributable to increased oxidative stress and mitochondrial dysfunction.

4.
Free Radic Biol Med ; 169: 416-424, 2021 06.
Article in English | MEDLINE | ID: mdl-33930515

ABSTRACT

Serum transferrin (Tf) is the essential iron transport protein in the body. Transferrin is responsible for the sequestration of free iron in serum and the delivery of iron throughout the body and into cells, where iron is released inside a mildly acidified endosome. Altered iron distributions are associated with diseases such as iron-overload, cancer, and cardiovascular disease. The presence of free iron is linked to deleterious redox reactions, inside and outside cells and organelles. As Tf iron release is pH dependent, any changes in intraorganelle and extracellular pH, often associated with disease progression, could inhibit normal iron delivery or accelerate iron release in the wrong compartment. However, imaging approaches to monitor changes in the iron-bound state of Tf are lacking. Recently, Raman spectroscopy has been shown to measure iron-bound forms of Tf in solution, intact cells and tissue samples. Here, a biochemical Raman assay has been developed to identify iron-release from Tf following modification of chemical environment. Quantitative singular value decomposition (SVD) method has been applied to discriminate between iron-bound Tf samples during endocytic trafficking in intact cancer cells subjected to Raman hyperspectral confocal imaging. We demonstrate the strength of the SVD method to monitor pH-induced Tf iron-release using Raman hyperspectral imaging, providing the redox biology field with a novel tool that facilitates subcellular investigation of the iron-binding profile of transferrin in various disease models.


Subject(s)
Iron , Transferrin , Endosomes/metabolism , Hyperspectral Imaging , Iron/metabolism , Receptors, Transferrin
5.
Redox Biol ; 36: 101617, 2020 09.
Article in English | MEDLINE | ID: mdl-32863219

ABSTRACT

Transferrin (Tf) is an essential serum protein which delivers iron throughout the body via transferrin-receptor (TfR)-mediated uptake and iron release in early endosomes. Currently, there is no robust method to assay the population of iron-bound Tf in intact cells and tissues. Raman hyperspectral imaging detected spectral peaks that correlated with iron-bound Tf in intact cells and tumor xenografts sections (~1270-1300 cm-1). Iron-bound (holo) and iron-free (apo) human Tf forms were endocytosed by MDAMB231 and T47D human breast cancer cells. The Raman iron-bound Tf peak was identified in cells treated with holo-Tf, but not in cells incubated with apo-Tf. A reduction in the Raman peak intensity between 5 and 30 min of Tf internalization was observed in T47D, but not in MDAMB231, suggesting that T47D can release iron from Tf more efficiently than MDAMB231. MDAMB231 may display a disrupted iron homeostasis due to iron release delays caused by alterations in the pH or ionic milieu of the early endosomes. In summary, we have demonstrated that Raman hyperspectral imaging can be used to identify iron-bound Tf in cell cultures and tumor xenografts and detect iron release behavior of Tf in breast cancer cells.


Subject(s)
Breast Neoplasms , Biological Transport , Breast Neoplasms/diagnostic imaging , Female , Homeostasis , Humans , Iron/metabolism , Receptors, Transferrin/metabolism , Transferrin/metabolism
6.
Opt Commun ; 4582020 Mar 01.
Article in English | MEDLINE | ID: mdl-32863438

ABSTRACT

We present a dual wavelength digital holographic technique for three-dimensional microscopic imaging of layered structures, where layers are separated from one another by the axial distances exceeding the wavelength of imaging light. Our methodology not only provides the three-dimensional structure of each layer, but also allows the height differentiation of distinct layers. We have also implemented a technique suppressing low intensity signal when no reliable phase information can be extracted, based on the quality of the interference fringe pattern. We utilize a dual wavelength setup, where the combination of two overlapping interferometers enables simultaneous acquisition of two phase profiles. We demonstrate that this imaging modality is particularly well-suited for imaging of multilayered electrode structures embedded in glass.

7.
Appl Spectrosc ; 74(8): 940-947, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32383405

ABSTRACT

Determination of the age of ivory is important for controlling illegal trafficking and the proper identification of ivory artifacts. Radiocarbon dating is the standard method of determining the age of ivories; however, it requires the destruction of a fragment of the sample. Raman spectroscopy is a nondestructive technique, and therefore can be used on artwork. Moreover, Raman measurements can be done using a portable system, and the data analysis can be performed on the spot once the groundwork is done. Ivories contain two primary components: collagen and bioapatite. Raman spectrum of ivory material is mainly a sum of the vibrational bands of these components. As collagen deteriorates with time, its Raman signal decreases; therefore, the ratio of collagen to bioapatite peaks is smaller in the older samples compared to the younger ones, providing a basis for sample dating. We have compared the results of Raman and radiocarbon measurements applied to a set of elephant ivory fragments and have successfully calibrated the Raman data set using radiocarbon measurements. We found that the Raman collagen to bioapatite peak ratios of the samples can be used as a metric to determine their age, providing a nondestructive technique to assess the age of ivory samples. We have also used singular value decomposition (SVD) to analyze the whole Raman spectra. We have observed clear separation between samples of different ages in the SVD component space. The samples also tended to align along the timeline diagonal in the correct order. The changes in multiple collagen and bioapatite peaks contribute to the differences in Raman spectra of ivory samples of different age.

8.
Opt Express ; 28(5): 6123-6133, 2020 Mar 02.
Article in English | MEDLINE | ID: mdl-32225868

ABSTRACT

We describe a microscopic setup implementing phase imaging by digital holographic microscopy (DHM) and transport of intensity equation (TIE) methods, which allows the results of both measurements to be quantitatively compared for either live cell or static samples. Digital holographic microscopy is a well-established method that provides robust phase reconstructions, but requires a sophisticated interferometric imaging system. TIE, on the other hand, is directly compatible with bright-field microscopy, but is more susceptible to noise artifacts. We present results comparing DHM and TIE on a custom-built microscope system that allows both techniques to be used on the same cells in rapid succession, thus permitting the comparison of the accuracy of both methods.


Subject(s)
Digital Technology , Holography/methods , Microscopy/methods , Animals , Cell Survival , Cheek , Fourier Analysis , Humans
9.
Spectrochim Acta A Mol Biomol Spectrosc ; 227: 117670, 2020 Feb 15.
Article in English | MEDLINE | ID: mdl-31715385

ABSTRACT

Nanofiber scaffolds are used in bioengineering for functional support of growing tissues. To fine tune nanofiber properties for specific applications, it is often necessary to characterize the spatial distribution of their chemical content. Raman spectroscopy is a common tool used to characterize chemical composition of various materials, including nanofibers. In combination with a confocal microscope, it allows simultaneous mapping of both spectral and spatial features of inhomogeneous structures, also known as hyperspectral imaging. However, such mapping is usually performed on microscopic scale, due to the resolution of the scanning system being diffraction limited (about 0.2-0.5 micron, depending on the excitation wavelength). We present an application of confocal Raman microscopy to hyperspectral mapping of nanofibers, where nanoscale features are resolved by means of oversampling and extensive data processing, including Singular Value Decomposition and Classical Least Squares decomposition techniques. Oversampling and data processing facilitated evaluation of the spatial distribution of different chemical components within multi-component nanofibers.


Subject(s)
Microscopy, Confocal , Nanofibers/chemistry , Tissue Engineering , Decanoates/chemistry , EGF Family of Proteins/metabolism , Emulsions/chemistry , Glycerol/analogs & derivatives , Glycerol/chemistry , Nanofibers/ultrastructure , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Polymers/chemistry , Spectrum Analysis, Raman
10.
J Biomed Opt ; 24(4): 1-10, 2019 04.
Article in English | MEDLINE | ID: mdl-31025559

ABSTRACT

We used phase microscopy and Raman spectroscopic measurements to assess the response of in vitro rat C6 glial cells following methamphetamine treatment in real time. Digital holographic microscopy (DHM) and three-dimensional (3-D) tomographic nanoscopy allow measurements of live cell cultures, which yield information about cell volume changes. Tomographic phase imaging provides 3-D information about the refractive index distribution associated with the morphology of biological samples. DHM provides similar information, but for a larger population of cells. Morphological changes in cells are associated with alterations in cell cycle and initiation of cell death mechanisms. Raman spectroscopy measurements provide information about chemical changes within the cells. Our Raman data indicate that the chemical changes in proteins preceded morphological changes, which were seen with DHM. Our study also emphasizes that tomographic phase imaging, DHM, and Raman spectroscopy are imaging tools that can be utilized for noninvasive simultaneous monitoring of morphological and chemical changes in cells during apoptosis and can also be used to monitor other dynamic cell processes.


Subject(s)
Apoptosis/drug effects , Imaging, Three-Dimensional/methods , Methamphetamine/pharmacology , Microscopy/methods , Animals , Cell Line, Tumor , Equipment Design , Holography/methods , Nanotechnology , Neuroglia/drug effects , Rats , Spectrum Analysis, Raman
11.
J Neuroimmune Pharmacol ; 13(3): 396-411, 2018 09.
Article in English | MEDLINE | ID: mdl-29644532

ABSTRACT

Methamphetamine (METH) is a drug of abuse, the acute and chronic use of which induces neurotoxic responses in the human brain, ultimately leading to neurocognitive disorders. Our goals were to understand the impact of METH on microglial mitochondrial respiration and to determine whether METH induces the activation of the mitochondrial-dependent intrinsic apoptosis pathway in microglia. We assessed the expression of pro- apoptosis genes using qPCR of RNA extracted from a human microglial cell line (HTHU). We examined the apoptosis-inducing effects of METH on microglial cells using digital holographic microscopy (DHM) to quantify real-time apoptotic volume decrease (AVD) in microglia in a noninvasive manner. METH treatment significantly increased AVD, activated Caspase 3/7, increased the gene expression levels of the pro- apoptosis proteins, APAF-1 and BAX, and decreased mitochondrial DNA content. Using immunofluorescence analysis, we found that METH increased the expression of the mitochondrial proteins cytochrome c and MCL-1, supporting the activation of mitochondrion-dependent (intrinsic) apoptosis pathway. Cellular bio-energetic flux analysis by Agilent Seahorse XF Analyzer revealed that METH treatment increased both oxidative and glycolytic respiration after 3 h, which was sustained for at least 24 h. Several events, such as oxidative stress, neuro-inflammatory responses, and mitochondrial dysfunction, may converge to mediate METH-induced apoptosis of microglia that may contribute to neurotoxicity of the CNS. Our study has important implications for therapeutic strategies aimed at preserving mitochondrial function in METH abusing patients.


Subject(s)
Apoptosis/drug effects , Central Nervous System Stimulants/toxicity , Methamphetamine/toxicity , Microglia/drug effects , Mitochondria/drug effects , Amphetamine-Related Disorders/metabolism , Amphetamine-Related Disorders/pathology , Apoptosis Regulatory Proteins/biosynthesis , Caspase 3/biosynthesis , Caspase 7/biosynthesis , Cell Line , Cell Survival/drug effects , DNA, Mitochondrial/biosynthesis , Humans , Receptors, sigma/biosynthesis , Sigma-1 Receptor
12.
Biomed Opt Express ; 8(2): 1025-1035, 2017 Feb 01.
Article in English | MEDLINE | ID: mdl-28271000

ABSTRACT

Core/shell nanofibers are becoming increasingly popular for applications in tissue engineering. Nanofibers alone provide surface topography and increased surface area that promote cellular attachment; however, core/shell nanofibers provide the versatility of incorporating two materials with different properties into one. Such synthetic materials can provide the mechanical and degradation properties required to make a construct that mimics in vivo tissue. Many variations of these fibers can be produced. The challenge lies in the ability to characterize and quantify these nanofibers post fabrication. We developed a non-invasive method for the composition characterization and quantification at the nanoscale level of fibers using Confocal Raman microscopy. The biodegradable/biocompatible nanofibers, Poly (glycerol-sebacate)/Poly (lactic-co-glycolic) (PGS/PLGA), were characterized as a part of a fiber scaffold to quickly and efficiently analyze the quality of the substrate used for tissue engineering.

13.
Proc SPIE Int Soc Opt Eng ; 89262014 Feb 01.
Article in English | MEDLINE | ID: mdl-25999648

ABSTRACT

Determination of optical properties (absorption (µa) and scattering (µs') coefficients) in human tissue is important when it comes to accurate calculation of fluence rate in and around tissue area. ALA application to the tissue induces production of protoporphyrin IX when activated by red light. Changes in the tissue optical properties can send information such as treatment outcome and tissue drug concentration. Patients in this study were treated with PDT for head and neck mucosal dysplasia. They were enrolled in a phase I study of escalating light doses and oral ALA with 60mg/kg. Red light at 630nm was administered to the tumor from a laser. The light dose was escalated from 50-200J/cm2 with a measured fluence rate at tissue surface of 100mW/cm2. We developed a light detection device for the purpose of determining optical properties in vivo using the semi-infinite method. The light detection device consists of two parallel, placed 5mm apart. In one of the catheters a 2 mm long linear diffusing light source is placed while in the second catheter, a calibrated isotropic detector is placed. The detector is scanned along the length of the light source containing catheter. Scans are done with the device placed on the treatment area (tumor) and on the normal tissue. Optical properties were measured in-vivo before and after PDT delivery for both normal tissue and tumor.

14.
Proc SPIE Int Soc Opt Eng ; 89312014 Feb 01.
Article in English | MEDLINE | ID: mdl-25999650

ABSTRACT

In the operating room, time is extremely precious, and the speed of one's data acquisition system often determines whether the data will be taken or not. Our multichannel robotic platform addresses this issue by optimizing source and detector scanning procedures. Up to 16 fibers can be moved independently with resolution of 0.05 mm and speed of 50 mm/s using motors with position feedback. The initial fiber alignment employs a light beam/optical detector system for identical positioning of all motors. Peak and edge detection algorithms, for point and linear sources, are used with multiple fibers simultaneously for fast realignment of sources and detectors. The robotic platform is used to perform Diffuse Optical Tomography (DOT) measurements in solid prostate phantoms with both homogenous and inhomogeneous Optical Properties (OP). Correct positioning is critical for the accurate recovery of the OP. The light fluence rate distribution is determined by scanning multiple detector fibers simultaneously along lit linear sources placed throughout the phantom volume inside catheter needles. The scanning time for the entire DOT is about 10 seconds after the initial alignment. The OP distribution reconstruction is based on the steady-state light diffusion equation. The inverse interstitial DOT problem is solved using NIRFAST. The optical properties are recovered by iterative minimization of the difference between measured and calculated light fluence rates. Recovered OP agree with the actual values within 10%. The OP corrections are used to significantly improve light fluence accuracy for the entire volume of bulk tumor.

15.
Proc SPIE Int Soc Opt Eng ; 8568: 85680Q, 2013 Mar 13.
Article in English | MEDLINE | ID: mdl-25914794

ABSTRACT

A custom-made robotic multichannel platform for interstitial photodynamic therapy (PDT) and diffuse optical tomography (DOT) was developed and tested in a phantom experiment. The system, which was compatible with the operating room (OR) environment, had 16 channels for independent positioning of light sources and/or isotropic detectors in separate catheters. Each channel's motor had an optical encoder for position feedback, with resolution of 1.5 mm, and a maximum speed of 5 cm/s. Automatic calibration of detector positions was implemented using an optical diode beam that defined the starting position of each motor, and by means of feedback algorithms controlling individual channels. As a result, the accuracy of zero position of 0.1 mm for all channels was achieved. We have also employed scanning procedures where detectors automatically covered the appropriate range around source positions. Thus, total scan time for a typical optical properties (OP) measurement throughout the phantom was about 1.5 minutes with point sources. The OP were determined based on the measured light fluence rates. These enhancements allow a tremendous improvement of treatment quality for a bulk tumor compared to the systems employed in previous clinical trials.

16.
Proc SPIE Int Soc Opt Eng ; 85682013 Feb 02.
Article in English | MEDLINE | ID: mdl-25999641

ABSTRACT

Photosensitizer fluorescence emitted during photodynamic therapy (PDT) is of interest for monitoring the local concentration of the photosensitizer and its photobleaching. In this study, we use Monte Carlo (MC) simulations to evaluate the relationship between treatment light and fluorescence, both collected by an isotropic detector placed on the surface of the tissue. In treatment of the thoracic and peritoneal cavities, the light source position changes continually. The MC program is designed to simulate an infinitely broad photon beam incident on the tissue at various angles to determine the effect of angle. For each of the absorbed photons, a fixed number of fluorescence photons are generated and traced. The theoretical results from the MC simulation show that the angle theta has little effect on both the measured fluorescence and the ratio of fluorescence to diffuse reflectance. However, changes in the absorption and scattering coefficients, µa and [Formula: see text], do cause the fluorescence and ratio to change, indicating that a correction for optical properties will be needed for absolute fluorescence quantification. Experiments in tissue-simulating phantoms confirm that an empirical correction can accurately recover the sensitizer concentration over a physiologically relevant range of optical properties.

17.
Proc SPIE Int Soc Opt Eng ; 85682013 Feb 02.
Article in English | MEDLINE | ID: mdl-25999645

ABSTRACT

PDT dose is the product of the photosensitizer concentration and the light fluence in target tissue. Although existing systems are capable of measuring the light fluence in vivo, the concurrent measurement of photosensitizer in the treated tissue so far has been lacking. We have developed and tested a new method to simultaneously acquire light dosimetry and photosensitizer fluorescence data via the same isotropic detector, employing treatment light as the excitation source. A dichroic beamsplitter is used to split light from the isotropic detector into two fibers, one for light dosimetry, the other, after the 665 nm treatment light is removed by a band-stop filter, to a spectrometer for fluorescence detection. The light fluence varies significantly during treatment because of the source movement. The fluorescence signal is normalized by the light fluence measured at treatment wavelength. We have shown that the absolute photosensitizer concentration can be obtained by an optical properties correction factor and linear spectral fitting. Tissue optical properties are determined using an absorption spectroscopy probe immediately before PDT at the same sites. This novel method allows accurate real-time determination of delivered PDT dose using existing isotropic detectors, and may lead to a considerable improvement of PDT treatment quality compared to the currently employed systems. Preliminary data in patient studies is presented.

18.
Proc SPIE Int Soc Opt Eng ; 85682013 Feb 02.
Article in English | MEDLINE | ID: mdl-25999646

ABSTRACT

In-vivo light dosimetry for patients undergoing photodynamic therapy (PDT) is critical for predicting PDT outcome. Patients in this study are enrolled in a Phase I clinical trial of HPPH-mediated PDT for the treatment of non-small cell lung cancer with pleural effusion. They are administered 4mg per kg body weight HPPH 48 hours before the surgery and receive light therapy with a fluence of 15-45 J/cm2 at 661 and 665nm. Fluence rate (mW/cm2) and cumulative fluence (J/cm2) are monitored at 7 sites during the light treatment delivery using isotropic detectors. Light fluence (rate) delivered to patients is examined as a function of treatment time, volume and surface area. In a previous study, a correlation between the treatment time and the treatment volume and surface area was established. However, we did not include the direct light and the effect of the shape of the pleural surface on the scattered light. A real-time infrared (IR) navigation system was used to separate the contribution from the direct light. An improved expression that accurately calculates the total fluence at the cavity wall as a function of light source location, cavity geometry and optical properties is determined based on theoretical and phantom studies. The theoretical study includes an expression for light fluence rate in an elliptical geometry instead of the spheroid geometry used previously. The calculated light fluence is compared to the measured fluence in patients of different cavity geometries and optical properties. The result can be used as a clinical guideline for future pleural PDT treatment.

SELECTION OF CITATIONS
SEARCH DETAIL
...