Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
iScience ; 27(2): 108994, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38327801

ABSTRACT

Regulatory T (Treg) cell defects are implicated in disorders of embryo implantation and placental development, but the origins of Treg cell dysfunction are unknown. Here, we comprehensively analyzed the phenotypes and transcriptional profile of peripheral blood Treg cells in individuals with early pregnancy failure (EPF). Compared to fertile subjects, EPF subjects had 32% fewer total Treg cells and 54% fewer CD45RA+CCR7+ naive Treg cells among CD4+ T cells, an altered Treg cell phenotype with reduced transcription factor FOXP3 and suppressive marker CTLA4 expression, and lower Treg:Th1 and Treg:Th17 ratios. RNA sequencing demonstrated an aberrant gene expression profile, with upregulation of pro-inflammatory genes including CSF2, IL4, IL17A, IL21, and IFNG in EPF Treg cells. In silico analysis revealed 25% of the Treg cell dysregulated genes are targets of FOXP3. We conclude that EPF is associated with systemic Treg cell defects arising due to disrupted FOXP3 transcriptional control and loss of lineage fidelity.

2.
Hum Reprod Update ; 30(3): 243-261, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38237150

ABSTRACT

BACKGROUND: The last decade has seen increased research on the relationship between diet and male fertility, but there are no clearly defined nutritional recommendations for men in the preconception period to support clinical fertility outcomes. OBJECTIVE AND RATIONALE: The purpose of this scoping review is to examine the extent and range of research undertaken to evaluate the effect(s) of diet in the preconception period on male clinical fertility and reproductive outcomes. SEARCH METHODS: Four electronic databases (MEDLINE and EMBASE via Ovid, CAB Direct, and CINAHL via EBSCO) were searched from inception to July 2023 for randomized controlled trials (RCTs) and observational studies (prospective/retrospective, case-control, and cross-sectional). Intervention studies in male participants or couples aiming to achieve dietary or nutritional change, or non-intervention studies examining dietary or nutritional components (whole diets, dietary patterns, food groups or individual foods) in the preconception period were included. Controls were defined as any comparison group for RCTs, and any/no comparison for observational studies. Primary outcomes of interest included the effect(s) of male preconception diet on clinical outcomes such as conception (natural or via ART), pregnancy rates and live birth rates. Secondary outcomes included time to conception and sperm parameters. OUTCOMES: A total of 37 studies were eligible, including one RCT and 36 observational studies (prospective, cross-sectional, and case-control studies; four studies in non-ART populations) published between 2008 and 2023. Eight reported clinical outcomes, 26 reported on secondary outcomes, and three reported on both. The RCT did not assess clinical outcomes but found that tomato juice may benefit sperm motility. In observational studies, some evidence suggested that increasing fish or reducing sugar-sweetened beverages, processed meat or total fat may improve fecundability. Evidence for other clinical outcomes, such as pregnancy rates or live birth rates, showed no relationship with cereals, soy and dairy, and inconsistent relationships with consuming red meat or a 'healthy diet' pattern. For improved sperm parameters, limited evidence supported increasing fish, fats/fatty acids, carbohydrates and dairy, and reducing processed meat, while the evidence for fruits, vegetables, cereals, legumes, eggs, red meat and protein was inconsistent. Healthy diet patterns in general were shown to improve sperm health. WIDER IMPLICATIONS: Specific dietary recommendations for improving male fertility are precluded by the lack of reporting on clinical pregnancy outcomes, heterogeneity of the available literature and the paucity of RCTs to determine causation or to rule out reverse causation. There may be some benefit from increasing fish, adopting a healthy dietary pattern, and reducing consumption of sugar-sweetened beverages and processed meat, but it is unclear whether these benefits extend beyond sperm parameters to improve clinical fertility. More studies exploring whole diets rather than singular foods or nutritional components in the context of male fertility are encouraged, particularly by means of RCTs where feasible. Further assessment of core fertility outcomes is warranted and requires careful planning in high-quality prospective studies and RCTs. These studies can lay the groundwork for targeted dietary guidelines and enhance the prospects of successful fertility outcomes for men in the preconception period. Systematic search of preconception diet suggests that increasing fish and reducing sugary drinks, processed meats and total fat may improve male fertility, while consuming healthy diets, fish, fats/fatty acids, carbohydrates and dairy and reducing processed meat can improve sperm health.


Subject(s)
Diet , Fertility , Humans , Male , Pregnancy , Female , Fertility/drug effects , Preconception Care/methods , Pregnancy Rate
3.
Sci Rep ; 13(1): 22093, 2023 12 13.
Article in English | MEDLINE | ID: mdl-38086891

ABSTRACT

Kaplan-Meier (KM) survival analyses based on complex patient categorization due to the burgeoning volumes of genomic, molecular and phenotypic data, are an increasingly important aspect of the biomedical researcher's toolkit. Commercial statistics and graphing packages for such analyses are functionally limited, whereas open-source tools have a high barrier-to-entry in terms of understanding of methodologies and computational expertise. We developed surviveR to address this unmet need for a survival analysis tool that can enable users with limited computational expertise to conduct routine but complex analyses. surviveR is a cloud-based Shiny application, that addresses our identified unmet need for an easy-to-use web-based tool that can plot and analyse survival based datasets. Integrated customization options allows a user with limited computational expertise to easily filter patients to enable custom cohort generation, automatically calculate log-rank test and Cox hazard ratios. Continuous datasets can be integrated, such as RNA or protein expression measurements which can be then used as categories for survival plotting. We further demonstrate the utility through exemplifying its application to a clinically relevant colorectal cancer patient dataset. surviveR is a cloud-based web application available at https://generatr.qub.ac.uk/app/surviveR , that can be used by non-experts users to perform complex custom survival analysis.


Subject(s)
Neoplasms , Software , Humans , Survival Analysis , Kaplan-Meier Estimate , Neoplasms/genetics
4.
JCI Insight ; 8(11)2023 06 08.
Article in English | MEDLINE | ID: mdl-37191999

ABSTRACT

Progesterone (P4) is essential for embryo implantation, but the extent to which the pro-gestational effects of P4 depend on the maternal immune compartment is unknown. Here, we investigate whether regulatory T cells (Treg cells) act to mediate luteal phase P4 effects on uterine receptivity in mice. P4 antagonist RU486 administered to mice on days 0.5 and 2.5 postcoitum to model luteal phase P4 deficiency caused fewer CD4+Foxp3+ Treg cells and impaired Treg functional competence, along with dysfunctional uterine vascular remodeling and perturbed placental development in midgestation. These effects were linked with fetal loss and fetal growth restriction, accompanied by a Th1/CD8-skewed T cell profile. Adoptive transfer at implantation of Treg cells - but not conventional T cells - alleviated fetal loss and fetal growth restriction by mitigating adverse effects of reduced P4 signaling on uterine blood vessel remodeling and placental structure and by restoring maternal T cell imbalance. These findings demonstrate an essential role for Treg cells in mediating P4 effects at implantation and indicate that Treg cells are a sensitive and critical effector mechanism through which P4 drives uterine receptivity to support robust placental development and fetal growth.


Subject(s)
Progesterone , T-Lymphocytes, Regulatory , Humans , Pregnancy , Female , Animals , Mice , Progesterone/pharmacology , Placenta , Fetal Growth Retardation , Embryo Implantation/physiology , Fetal Development
5.
Andrology ; 11(7): 1245-1266, 2023 10.
Article in English | MEDLINE | ID: mdl-36891953

ABSTRACT

OBJECTIVE: Seminal plasma cytokines are associated with fertility and reproductive health, but progressing their clinical utility is hampered by absence of reference data on concentration ranges of relevant cytokines in healthy men. We employed a systematic approach to assemble current evidence on the concentrations of immune regulatory cytokines present in seminal plasma (SP) of normozoospermic and/or fertile men and evaluated the impact of different platform methodologies for cytokine quantification. EVIDENCE REVIEW: A systematic literature search was performed utilising PubMed, Web of Science and Scopus. Databases were searched from inception until 30th June 2022 inclusive, using combinations of keywords pertaining to seminal fluid and cytokines, and was restricted to human participants. Original data with values reported as concentration of specific cytokines in SP of men clearly defined as fertile or normozoospermic were extracted from studies written in English. RESULTS: A total of 3769 publications were initially identified, of which 118 fulfilled the eligibility criteria for inclusion. A total of 51 individual cytokines are detectable in SP of healthy men. The number of studies reporting on each cytokine range from 1 to >20. The reported concentrations for many cytokines linked with fertility status, including IL6, CXCL8/IL8, and TNFA, are highly variable between published studies. This is associated with the different immunoassay methodologies utilised and may be exacerbated by a lack of validation of assays to ensure suitability for SP assessment. Due to the large variation between studies, accurate reference ranges for healthy men cannot be determined from the published data. CONCLUSIONS: The concentrations of cytokines and chemokines detected in SP is inconsistent and highly variable between studies and cohorts, limiting current capacity to define reference ranges for cytokine concentrations in fertile men. The lack of standardisation in methods used to process and store SP, and variation in platforms used to evaluate cytokine abundance, are factors contributing to the observed heterogeneity. To progress the clinical utility of SP cytokine analysis will require standardisation and validation of methodologies so that reference ranges for healthy fertile men can be defined.


Subject(s)
Infertility, Male , Semen , Male , Humans , Cytokines , Fertility , Analysis of Variance
6.
Andrology ; 11(8): 1566-1578, 2023 11.
Article in English | MEDLINE | ID: mdl-36455546

ABSTRACT

BACKGROUND: Oxidative stress in semen contributes up to 80% of all infertility diagnosis. Diagnostics to measure oxidative stress in semen was recently added to the 6th edition WHO methods manual, although diagnostic predictive values need to be interpreted with caution as there are still several research questions yet to be answered. OBJECTIVES: To determine the natural fluctuations in semen redox indicators (MiOXSYS® and OxiSperm® II) within and between men and their association with markers of sperm oxidative stress. MATERIALS AND METHODS: Total, 118 repeat semen samples from 31 generally healthy men aged 18-45 years, over 6 months. Standard semen analysis as per 5th WHO manual. Semen redox levels measured via MiOXSYS® and OxiSperm® II. Additional attributes of sperm quality; HBA® binding assay and sperm hyperactivation and oxidative stress; DNA fragmentation (Halo® Sperm) and lipid peroxidation (BODIPY™ 581/591 C11) were assessed. RESULTS: Samples with high redox-potential (MiOXSYS® ≥1.47 sORP/106 sperm/ml) had lower sperm, motility, morphology and higher DNA fragmentation (P < 0.05). Upon further analysis, these associations were driven solely by the adjustment of sperm concentration (106 /ml) in normalised redox-potential. No significant associations between NBT-reactivity (OxiSperm® II) and measures of the sperm function or oxidative stress were observed (P > 0.05). Fluctuations in semen redox levels varied greater between men than within men over the study period. DISCUSSION: Neither MiOXSYS® nor OxiSperm® II assays were predictive of sperm function or sperm oxidative stress. This was likely due at least in part to limited understanding of their biochemistry and clinical application. As a result, these assays seem to provide no additional clinical utility beyond that of a standard semen analysis, highlighting the imperative for the development of new robust point-of-care devices for accurately determining sperm oxidative stress. CONCLUSION: These findings suggest that MiOXSYS® and OxiSperm® II systems for the measurement of sperm oxidative stress may have limited diagnostic potential.


Subject(s)
Infertility, Male , Semen , Humans , Male , Semen/metabolism , Infertility, Male/genetics , Sperm Motility/genetics , Spermatozoa/metabolism , Semen Analysis/methods , Oxidative Stress/genetics
7.
Endocrinology ; 163(9)2022 09 01.
Article in English | MEDLINE | ID: mdl-35786711

ABSTRACT

Regulatory T (Treg) cells are a specialized CD4+ T cell subpopulation that are essential for immune homeostasis, immune tolerance, and protection against autoimmunity. There is evidence that sex-steroid hormones estrogen and progesterone modulate Treg cell abundance and phenotype in women. Since natural oscillations in these hormones are modified by hormonal contraceptives, we examined whether oral contraception (OC) use impacts Treg cells and related T cell populations. T cells were analyzed by multiparameter flow cytometry in peripheral blood collected across the menstrual cycle from healthy women either using OC or without hormonal contraception and from age-matched men. Compared to naturally cycling women, women using OC had fewer Treg cells and an altered Treg cell phenotype. Notably, Treg cells exhibiting a strongly suppressive phenotype, defined by high FOXP3, CD25, Helios, HLADR, CTLA4, and Ki67, comprised a lower proportion of total Treg cells, particularly in the early- and mid-cycle phases. The changes were moderate compared to more substantial differences in Treg cells between women and men, wherein women had fewer Treg cells-especially of the effector memory Treg cell subset-associated with more T helper type 1 (Th1) cells and CD8+ T cells and lower Treg:Th1 cell and Treg:CD8+ T cell ratios than men. These findings imply that OC can modulate the number and phenotype of peripheral blood Treg cells and raise the possibility that Treg cells contribute to the physiological changes and altered disease susceptibility linked with OC use.


Subject(s)
Forkhead Transcription Factors , T-Lymphocytes, Regulatory , Contraception , Female , Forkhead Transcription Factors/metabolism , Hormones/metabolism , Humans , Phenotype , T-Lymphocytes, Regulatory/metabolism
8.
Antioxidants (Basel) ; 11(2)2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35204147

ABSTRACT

Oxidative stress and elevated levels of seminal and sperm reactive oxygen species (ROS) may contribute to up to 80% of male infertility diagnosis, with sperm ROS concentrations at fertilization important in the development of a healthy fetus and child. The evaluation of ROS in semen seems promising as a potential diagnostic tool for male infertility and male preconception care with a number of clinically available tests on the market (MiOXSYS, luminol chemiluminescence and OxiSperm). While some of these tests show promise for clinical use, discrepancies in documented decision limits and lack of cohort studies/clinical trials assessing their benefits on fertilization rates, embryo development, pregnancy and live birth rates limit their current clinical utility. In this review, we provide an update on the current techniques used for analyzing semen ROS concentrations clinically, the potential to use of ROS research tools for improving clinical ROS detection in sperm and describe why we believe we are likely still a long way away before semen ROS concentrations might become a mainstream preconception diagnostic test in men.

9.
Clin Transl Immunology ; 10(8): e1328, 2021.
Article in English | MEDLINE | ID: mdl-34408876

ABSTRACT

OBJECTIVES: Intravenous infusion of Intralipid is an adjunct therapy in assisted reproduction treatment (ART) when immune-associated infertility is suspected. Here, we evaluated the effect of Intralipid infusion on regulatory T cells (Treg cells), effector T cells and plasma cytokines in peripheral blood of women undertaking IVF. METHODS: This prospective, observational pilot study assessed Intralipid infusion in 14 women exhibiting recurrent implantation failure, a clinical sign of immune-associated infertility. Peripheral blood was collected immediately prior to and 7 days after intravenous administration of Intralipid. Plasma cytokines were measured by Luminex, and T-cell subsets were analysed by flow cytometry. RESULTS: A small increase in conventional CD8+ T cells occurred after Intralipid infusion, but no change was seen in CD4+ Treg cells, or naïve, memory or effector memory T cells. Proliferation marker Ki67, transcription factors Tbet and RORγt, and markers of suppressive capacity CTLA4 and HLA-DR were unchanged. Dimensionality-reduction analysis using the tSNE algorithm confirmed no phenotype shift within Treg cells or other T cells. Intralipid infusion increased plasma CCL2, CCL3, CXCL8, GM-CSF, G-CSF, IL-6, IL-21, TNF and VEGF. CONCLUSION: Intralipid infusion elicited elevated pro-inflammatory cytokines, and a minor increase in CD8+ T cells, but no change in pro-tolerogenic Treg cells. Notwithstanding the limitation of no placebo control, the results do not support Intralipid as a candidate intervention to attenuate the Treg cell response in women undergoing ART. Future placebo-controlled studies are needed to confirm the potential efficacy and clinical significance of Intralipid in attenuating cytokine induction and circulating CD8+ T cells.

10.
Endocrinology ; 162(10)2021 10 01.
Article in English | MEDLINE | ID: mdl-34170298

ABSTRACT

Paternal experiences and exposures before conception can influence fetal development and offspring phenotype. The composition of seminal plasma contributes to paternal programming effects through modulating the female reproductive tract immune response after mating. To investigate whether paternal obesity affects seminal plasma immune-regulatory activity, C57Bl/6 male mice were fed an obesogenic high-fat diet (HFD) or control diet (CD) for 14 weeks. Although HFD consumption caused only minor changes to parameters of sperm quality, the volume of seminal vesicle fluid secretions was increased by 65%, and the concentrations and total content of immune-regulatory TGF-ß isoforms were decreased by 75% to 80% and 43% to 55%, respectively. Mating with BALB/c females revealed differences in the strength and properties of the postmating immune response elicited. Transcriptional analysis showed >300 inflammatory genes were similarly regulated in the uterine endometrium by mating independently of paternal diet, and 13 were dysregulated by HFD-fed compared with CD-fed males. Seminal vesicle fluid factors reduced in HFD-fed males, including TGF-ß1, IL-10, and TNF, were among the predicted upstream regulators of differentially regulated genes. Additionally, the T-cell response induced by mating with CD-fed males was blunted after mating with HFD-fed males, with 27% fewer CD4+ T cells, 26% fewer FOXP3+CD4+ regulatory T cells (Treg) cells, and 19% fewer CTLA4+ Treg cells, particularly within the NRP1+ thymic Treg cell population. These findings demonstrate that an obesogenic HFD alters the composition of seminal vesicle fluid and impairs seminal plasma capacity to elicit a favorable pro-tolerogenic immune response in females at conception.


Subject(s)
Plasma/metabolism , Semen/metabolism , Adiposity , Animals , Body Composition , Cytokines/metabolism , Diet, High-Fat , Female , Lymphocyte Subsets , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Nude , Phenotype , Pregnancy , Pregnancy, Animal , Protein Isoforms , Reproduction , Semen/physiology , Spermatozoa/physiology , T-Lymphocytes/cytology , T-Lymphocytes, Regulatory/immunology , Transforming Growth Factor beta1/metabolism , Uterus/pathology
11.
Commun Biol ; 4(1): 572, 2021 05 14.
Article in English | MEDLINE | ID: mdl-33990675

ABSTRACT

Seminal fluid factors modulate the female immune response at conception to facilitate embryo implantation and reproductive success. Whether sperm affect this response has not been clear. We evaluated global gene expression by microarray in the mouse uterus after mating with intact or vasectomized males. Intact males induced greater changes in gene transcription, prominently affecting pro-inflammatory cytokine and immune regulatory genes, with TLR4 signaling identified as a top-ranked upstream driver. Recruitment of neutrophils and expansion of peripheral regulatory T cells were elevated by seminal fluid of intact males. In vitro, epididymal sperm induced IL6, CXCL2, and CSF3 in uterine epithelial cells of wild-type, but not Tlr4 null females. Collectively these experiments show that sperm assist in promoting female immune tolerance by eliciting uterine cytokine expression through TLR4-dependent signaling. The findings indicate a biological role for sperm beyond oocyte fertilization, in modulating immune mechanisms involved in female control of reproductive investment.


Subject(s)
Embryo Implantation/immunology , Endometrium/immunology , Immune Tolerance/immunology , Reproduction , Spermatozoa/physiology , T-Lymphocytes, Regulatory/immunology , Uterus/immunology , Animals , Cell Communication , Cytokines/genetics , Cytokines/metabolism , Endometrium/metabolism , Female , Male , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Signal Transduction , T-Lymphocytes, Regulatory/metabolism , Uterus/metabolism , Vasectomy
12.
Am J Reprod Immunol ; 85(2): e13338, 2021 02.
Article in English | MEDLINE | ID: mdl-32885533

ABSTRACT

Extracellular vesicles (EVs) are secreted cell-derived membrane structures present in all organisms across animal, bacterial, and plant phyla. These vesicles play important roles in cell-cell communication in many processes integral to health and disease. Recent studies demonstrate that EVs and their cargo have influential and conserved roles in male reproduction. While EVs have been isolated from virtually all specialized tissues comprising the male reproductive tract, they are best characterized in the epididymis (epididymosomes) and seminal fluid (seminal fluid extracellular vesicles or prostasomes). Broadly speaking, EVs promote reproductive success through supporting sperm development and function, as well as influencing the physiology of female reproductive tract cells after mating. In this review, we present current knowledge on the composition and function of male reproductive tract EV populations in both normal physiology and pathology, and argue that their functions identify them as critical regulators of fertility and fecundity.


Subject(s)
Epididymis/physiology , Extracellular Vesicles/metabolism , Prostate/physiology , Spermatozoa/physiology , Animals , Cell Communication , Female , Fertility , Humans , Male , Reproduction , Sperm Motility
13.
Am J Pathol ; 190(5): 1030-1045, 2020 05.
Article in English | MEDLINE | ID: mdl-32084361

ABSTRACT

Spontaneous preterm labor is frequently caused by an inflammatory response in the gestational tissues elicited by either infectious or sterile agents. In sterile preterm labor, the key regulators of inflammation are not identified, but platelet-activating factor (PAF) is implicated as a potential rate-limiting effector agent. Since Toll-like receptor (TLR)-4 can amplify PAF signaling, we evaluated whether TLR4 contributes to inflammation and fetal loss in a mouse model of PAF-induced sterile preterm labor, and whether a small-molecule TLR4 inhibitor, (+)-naltrexone, can mitigate adverse PAF-induced effects. The administration of carbamyl (c)-PAF caused preterm labor and fetal loss in wild-type mice but not in TLR4-deficient mice. Treatment with (+)-naltrexone prevented preterm delivery and alleviated fetal demise in utero elicited after cPAF administered by i.p. or intrauterine routes. Pups born after cPAF and (+)-naltrexone treatment exhibited comparable rates of postnatal survival and growth to carrier-treated controls. (+)-Naltrexone suppressed the cPAF-induced expression of inflammatory cytokine genes Il1b, Il6, and Il10 in the decidua; Il6, Il12b, and Il10 in the myometrium; and Il1b and Il6 in the placenta. These data demonstrate that the TLR4 antagonist (+)-naltrexone inhibits the inflammatory cascade induced by cPAF, preventing preterm birth and perinatal death. The inhibition of TLR4 signaling warrants further investigation as a candidate strategy for fetal protection and delay of preterm birth elicited by sterile stimuli.


Subject(s)
Naltrexone/pharmacology , Narcotic Antagonists/pharmacology , Obstetric Labor, Premature/metabolism , Platelet Activating Factor/metabolism , Toll-Like Receptor 4/metabolism , Animals , Female , Mice , Mice, Inbred BALB C , Pregnancy
14.
Cells ; 9(2)2020 02 05.
Article in English | MEDLINE | ID: mdl-32033486

ABSTRACT

Innate immunity is critical for host defence against pathogen and environmental challenge and this involves the production and secretion of immune mediators, such as antimicrobial peptides and pro-inflammatory cytokines. However, when dysregulated, innate immunity can contribute to multifactorial diseases, including inflammatory rheumatic disorders, type 2 diabetes, cancer, neurodegenerative and cardiovascular diseases and even septic shock. During an innate immune response, antimicrobial peptides and cytokines are trafficked via Rab11 multivesicular endosomes, and then sorted into Rab11 vesicles for traffic to the plasma membrane and secretion. In this study, a cyclin-dependent kinase inhibitor CDKI-73 was used to determine its effect on the innate immune response, based on previously identified targets for this compound. Our results showed that CDKI-73 inhibited the delivery of Rab11 vesicles to the plasma membrane, resulting in the accumulation of large multivesicular Rab11 endosomes near the cell periphery. In addition to the effect on endosome delivery, CDKI-73 down-regulated the amount of innate immune cargo, including the antimicrobial peptide Drosomycin and pro-inflammatory cytokines interleukin-6 (IL-6) and tumour necrosis factor alpha (TNFα). We concluded that CDKI-73 has the potential to regulate the delivery and secretion of certain innate immune cargo, which could be used to control inflammation.


Subject(s)
Immunity, Innate , Pyrimidines/pharmacology , Sulfonamides/pharmacology , rab GTP-Binding Proteins/metabolism , Animals , Cytokines/metabolism , Drosophila/metabolism , Endosomes/drug effects , Endosomes/metabolism , Fat Body/drug effects , Fat Body/metabolism , Humans , Immunity, Innate/drug effects , Inflammation Mediators/metabolism , Macrophages/drug effects , Macrophages/metabolism , Membrane Fusion/drug effects , Protein Transport/drug effects , THP-1 Cells
15.
Endocrinology ; 160(11): 2646-2662, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31504393

ABSTRACT

Inflammation elicited by infection or noninfectious insults during gestation induces proinflammatory cytokines that can shift the trajectory of development to alter offspring phenotype, promote adiposity, and increase susceptibility to metabolic disease in later life. In this study, we use mice to investigate the utility of a small molecule Toll-like receptor (TLR)4 antagonist (+)-naloxone, the nonopioid isomer of the opioid receptor antagonist (-)-naloxone, for mitigating altered fetal metabolic programming induced by a modest systemic inflammatory challenge in late gestation. In adult progeny exposed to lipopolysaccharide (LPS) challenge in utero, male but not female offspring exhibited elevated adipose tissue, reduced muscle mass, and elevated plasma leptin at 20 weeks of age. Effects were largely reversed by coadministration of (+)-naloxone following LPS. When given alone without LPS, (+)-naloxone elicited accelerated postweaning growth and elevated muscle and fat mass in adult male but not female offspring. LPS induced expression of inflammatory cytokines Il1a, Il1b, Il6, Tnf, and Il10 in fetal brain, placental, and uterine tissues, and (+)-naloxone suppressed LPS-induced cytokine expression. Fetal sex-specific regulation of cytokine expression was evident, with higher Il1a, Il1b, Il6, and Il10 induced by LPS in tissues associated with male fetuses, and greater suppression by (+)-naloxone of Il6 in females. These data demonstrate that modulating TLR4 signaling with (+)-naloxone provides protection from inflammatory diversion of fetal developmental programming in utero, associated with attenuation of gestational tissue cytokine expression in a fetal sex-specific manner. The results suggest that pharmacologic interventions targeting TLR4 warrant evaluation for attenuating developmental programming effects of fetal exposure to maternal inflammatory mediators.


Subject(s)
Fetal Development/drug effects , Naloxone/therapeutic use , Prenatal Exposure Delayed Effects/prevention & control , Toll-Like Receptor 4/antagonists & inhibitors , Adipokines/blood , Animals , Cytokines/blood , Female , Lipopolysaccharides , Male , Mice, Inbred C57BL , Naloxone/pharmacology , Pregnancy , Sex Characteristics
16.
J Clin Endocrinol Metab ; 104(6): 1999-2022, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30608536

ABSTRACT

CONTEXT: Despite extensive searches for novel noninvasive diagnostics, laparoscopy remains the reference test for endometriosis. Circulating miRNAs are purported endometriosis biomarkers; however, the miRNA species and their diagnostic accuracy differ between studies and have not been validated in independent cohorts. OBJECTIVE: Identify endometriosis-specific plasma miRNAs and determine their diagnostic test accuracy. SETTING: Two university-based, public hospitals and a private gynecology practice in Australia. DESIGN AND PARTICIPANTS: Four phases: (i) Explorative phase. Plasma miRNA menstrual cycle fluctuations were evaluated in women with endometriosis and asymptomatic controls (n = 16). (ii) Biomarker discovery. Endometriosis-specific plasma miRNAs were identified in (a) women with endometriosis and asymptomatic controls (n = 16) and (b) women with and without surgically defined endometriosis (n = 20). (iii) Biomarker selection. Plasma miRNAs with the best diagnostic potential for endometriosis were selected in a surgically defined selection cohort (n = 78). (iv) Biomarker validation. The diagnostic test accuracy of these miRNAs was calculated in an independent, surgically defined validation cohort (n = 119). RESULTS: Forty-nine miRNAs were differentially expressed in women with endometriosis. Nine maintained dysregulation in the selection cohort, but only three (miR-155, miR574-3p and miR139-3p) did so in the validation cohort. Combined, these three miRNAs demonstrated a sensitivity and specificity of 83% and 51%, respectively. CONCLUSION: Plasma miRNAs demonstrated modest sensitivity and specificity as diagnostic tests or triage tools for endometriosis. Other groups' findings were not replicated and accorded poorly with our results. Circulating miRNAs demonstrate diagnostic potential, but stringent, standardized methodological approaches are required for the development of a clinically applicable tool.


Subject(s)
Circulating MicroRNA/blood , Endometriosis/diagnosis , Endometrium/diagnostic imaging , Adolescent , Adult , Australia , Biomarkers/blood , Case-Control Studies , Circulating MicroRNA/isolation & purification , Endometriosis/blood , Endometriosis/pathology , Endometriosis/surgery , Endometrium/pathology , Female , Humans , Laparoscopy , Menstrual Cycle/blood , Menstrual Cycle/physiology , Middle Aged , Multiplex Polymerase Chain Reaction , Predictive Value of Tests , Prospective Studies , Real-Time Polymerase Chain Reaction , Reproducibility of Results , Sensitivity and Specificity , Young Adult
17.
Reprod Biomed Soc Online ; 9: 48-63, 2019 Dec.
Article in English | MEDLINE | ID: mdl-32021914

ABSTRACT

This study examined the nature and accuracy of information available across online platforms for couples trying to conceive. A consumer simulation-based investigation of English websites and social media (Facebook, Twitter, Instagram) was undertaken using common search terms identified in a pilot study. Claims about fertility and pregnancy health were then extracted from the results and analysed thematically. The accuracy of each claim was assessed independently by six fertility and conception experts, rated on a scale of 1 (not factual) to 4 (highly factual), with scores collated to produce a median rating. Claims with a median score < 3 were classified as inaccurate. The use of the terms 'trying to conceive' and '#TTC' were common identifiers on online platforms. Claims were extracted predominantly from websites (n = 89) rather than social media, with Twitter and Instagram comprising commercial elements and Facebook focused on community-based support. Thematic analysis revealed three major themes among the claims across all platforms: conception behaviour and monitoring, lifestyle and exposures, and medical. Fact-checking by the experts revealed that 40% of the information assessed was inaccurate, and that inaccuracies were more likely to be present in the conception behaviour and monitoring advice, the topics most amenable to modification. Since online information is a readily accessible and commonly utilized resource, there is opportunity for improved dissemination of evidence-based material to reach interested couples. Further cross-disciplinary and consumer-based research, such as a user survey, is required to understand how best to provide the 'trying to conceive' community with accurate information.

18.
J Immunol ; 201(2): 325-334, 2018 07 15.
Article in English | MEDLINE | ID: mdl-29987001

ABSTRACT

Immune cells adapt their phenotypic and functional characteristics in response to the tissue microenvironment within which they traffic and reside. The fetomaternal interface, consisting of placental trophoblasts and the maternal decidua, is a highly specialized tissue with a unique and time-limited function: to nourish and support development of the semiallogeneic fetus and protect it from inflammatory or immune-mediated injury. It is therefore important to understand how immune cells within these tissues are educated and adapt to fulfill their biological functions. This review article focuses on the local regulatory mechanisms ensuring that both innate and adaptive immune cells appropriately support the early events of implantation and placental development through direct involvement in promoting immune tolerance of fetal alloantigens, suppressing inflammation, and remodeling of maternal uterine vessels to facilitate optimal placental function and fetal growth.


Subject(s)
Cellular Microenvironment/immunology , Fetal Development/immunology , Fetus/immunology , Placentation/immunology , Animals , Female , Humans , Pregnancy
19.
Biol Reprod ; 99(3): 514-526, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29596569

ABSTRACT

Seminal fluid interacts with the female reproductive tract to initiate a permissive immune response that facilitates embryo implantation and pregnancy success. The immune-regulatory cytokine interferon-γ (IFNG), which can be elevated in seminal plasma, is associated with reduced fertility. Here, we investigated how IFNG influences the female immune response to seminal fluid. In human Ect1 cervical epithelial cells, IFNG added at physiologically relevant concentrations substantially impaired seminal plasma-induced synthesis of key cytokines colony-stimulating factor 2 (CSF2) and interleukin-6 (IL6). Seminal fluid-induced CSF2 synthesis was also suppressed in the uterus of mice in vivo, when IFNG was delivered transcervically 12 h after mating. Transforming growth factor B1 (TGFB1) is the major seminal fluid signaling factor which elicits CSF2 induction, and IFNG exhibited potent dose-dependent suppression of CSF2 synthesis induced by TGFB1 in murine uterine epithelial cells in vitro. Similarly, IFNG suppressed TGFB1-mediated CSF2 induction in Ect1 cells and human primary cervical epithelial cells; however, IL6 regulation by IFNG was independent of TGFB1. Quantitative PCR confirmed that CSF2 regulation by IFNG in Ect1 cells occurs at the gene transcription level, secondary to IFNG suppression of TGFBR2 encoding TGFB receptor 2. Conversely, TGFB1 suppressed IFNG receptor 1 and 2 genes IFNGR1 and IFNGR2. These data identify IFNG as a potent inhibitor of the TGFB-mediated seminal fluid interaction with relevant reproductive tract epithelia in mice and human. These findings raise the prospect that IFNG in the male partner's seminal fluid impairs immune adaptation for pregnancy following coitus in women.


Subject(s)
Granulocyte-Macrophage Colony-Stimulating Factor/biosynthesis , Interferon-gamma/pharmacology , Semen/physiology , Uterus/metabolism , Animals , Cells, Cultured , Cervix Uteri/metabolism , Cytokines/biosynthesis , Cytokines/genetics , Epithelial Cells/chemistry , Epithelial Cells/metabolism , Female , Humans , Immune Tolerance/drug effects , Immunity/drug effects , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Pregnancy , RNA, Messenger/analysis , Reproduction/immunology , Semen/immunology , Transforming Growth Factor beta1/pharmacology
20.
Front Physiol ; 8: 422, 2017.
Article in English | MEDLINE | ID: mdl-28674503

ABSTRACT

The hormone relaxin is important in female reproduction for embryo implantation, cardiovascular function, and during labor and lactation. Relaxin is also synthesized in males by organs of the male tract. We hypothesized that relaxin might be one component of seminal plasma responsible for eliciting the female cytokine response induced in the uterus at mating. When recombinant relaxin was injected into the uterus of wild-type (Rln+/+) mice at estrus, it evoked the production of Cxcl1 mRNA and its secreted protein product CXCL1 in four of eight animals. Mating experiments were then conducted using mice with a null mutation in the relaxin gene (Rln-/- mice). qRT-PCR analysis of mRNA expression in wild-type females showed diminished uterine expression of several cytokine and chemokine genes in the absence of male relaxin. Similar differences were also noted comparing Rln-/- and Rln+/+ females mated to wild-type males. Quantification of uterine luminal fluid cytokine content confirmed that male relaxin provokes the production of CXCL10 and CSF3 in Rln+/+ females. Differences were also seen comparing Rln-/- and Rln+/+ females mated with Rln-/- males for CXCL1, CSF3, and CCL5, implying that endogenous relaxin in females might prime the uterus to respond appropriately to seminal fluid at coitus. Finally, pan-leukocyte CD45 mRNA was increased in wild-type matings compared to other combinations, implying that male and female relaxin may trigger leukocyte expansion in the uterus. We conclude that male and/or female relaxin may be important in activating the uterine cytokine/chemokine network required to initiate maternal immune adaptation to pregnancy.

SELECTION OF CITATIONS
SEARCH DETAIL
...