Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
J Am Chem Soc ; 145(17): 9672-9678, 2023 May 03.
Article in English | MEDLINE | ID: mdl-37092741

ABSTRACT

Shunts, alternative pathways in chemical reaction networks (CRNs), are ubiquitous in nature, enabling adaptability to external and internal stimuli. We introduce a CRN in which the recovery of Michael-accepting species is driven by oxidation chemistry. Using weak oxidants can enable access to two shunts within this CRN with different kinetics and a reduced number of side reactions compared to the main cycle that is driven by strong oxidants. Furthermore, we introduce a strategy to recycle one of the main products under flow conditions to partially reverse the CRN and control product speciation throughout time. These findings introduce new levels of control over artificial CRNs, driven by redox chemistry, narrowing the gap between synthetic and natural systems.

2.
Chem Rev ; 122(13): 11759-11777, 2022 07 13.
Article in English | MEDLINE | ID: mdl-35674495

ABSTRACT

Supramolecular polymerization can be controlled in space and time by chemical fuels. A nonassembled monomer is activated by the fuel and subsequently self-assembles into a polymer. Deactivation of the molecule either in solution or inside the polymer leads to disassembly. Whereas biology has already mastered this approach, fully artificial examples have only appeared in the past decade. Here, we map the available literature examples into four distinct regimes depending on their activation/deactivation rates and the equivalents of deactivating fuel. We present increasingly complex mathematical models, first considering only the chemical activation/deactivation rates (i.e., transient activation) and later including the full details of the isodesmic or cooperative supramolecular processes (i.e., transient self-assembly). We finish by showing that sustained oscillations are possible in chemically fueled cooperative supramolecular polymerization and provide mechanistic insights. We hope our models encourage the quantification of activation, deactivation, assembly, and disassembly kinetics in future studies.


Subject(s)
Polymers , Kinetics , Polymerization , Polymers/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...