Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Endocr Relat Cancer ; 20(1): 53-64, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23132791

ABSTRACT

17ß-Hydroxysteroid dehydrogenases (17ß-HSDs) catalyse the 17-position reduction/oxidation of steroids. 17ß-HSD type 3 (17ß-HSD3) catalyses the reduction of the weakly androgenic androstenedione (adione) to testosterone, suggesting that specific inhibitors of 17ß-HSD3 may have a role in the treatment of hormone-dependent prostate cancer and benign prostate hyperplasia. STX2171 is a novel selective non-steroidal 17ß-HSD3 inhibitor with an IC(50) of ∼200 nM in a whole-cell assay. It inhibits adione-stimulated proliferation of 17ß-HSD3-expressing androgen receptor-positive LNCaP(HSD3) prostate cancer cells in vitro. An androgen-stimulated LNCaP(HSD3) xenograft proof-of-concept model was developed to study the efficacies of STX2171 and a more established 17ß-HSD3 inhibitor, STX1383 (SCH-451659, Schering-Plough), in vivo. Castrated male MF-1 mice were inoculated s.c. with 1×10(7) cells 24 h after an initial daily dose of testosterone propionate (TP) or vehicle. After 4 weeks, tumours had not developed in vehicle-dosed mice, but were present in 50% of those mice given TP. One week after switching the stimulus to adione, mice were dosed additionally with the vehicle or inhibitor for a further 4 weeks. Both TP and adione efficiently stimulated tumour growth and increased plasma testosterone levels; however, in the presence of either 17ß-HSD3 inhibitor, adione-dependent tumour growth was significantly inhibited and plasma testosterone levels reduced. Mouse body weights were unaffected. Both inhibitors also significantly lowered plasma testosterone levels in intact mice. In conclusion, STX2171 and STX1383 significantly lower plasma testosterone levels and inhibit androgen-dependent tumour growth in vivo, indicating that 17ß-HSD3 inhibitors may have application in the treatment of hormone-dependent prostate cancer.


Subject(s)
17-Hydroxysteroid Dehydrogenases/antagonists & inhibitors , Benzazepines/pharmacology , Enzyme Inhibitors/pharmacology , Neoplasms, Hormone-Dependent/drug therapy , Prostatic Neoplasms/drug therapy , Testosterone/blood , 17-Hydroxysteroid Dehydrogenases/genetics , Animals , Apoptosis , Benzazepines/chemistry , Blotting, Western , Castration , Cell Proliferation , Enzyme Inhibitors/chemistry , Humans , Male , Mice , Mice, Nude , Neoplasms, Hormone-Dependent/enzymology , Neoplasms, Hormone-Dependent/pathology , Prostatic Neoplasms/enzymology , Prostatic Neoplasms/pathology , RNA, Messenger/genetics , Radioimmunoassay , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Tumor Burden , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
2.
Mol Cell Endocrinol ; 301(1-2): 259-65, 2009 Mar 25.
Article in English | MEDLINE | ID: mdl-18775469

ABSTRACT

17beta-Hydroxysteroid dehydrogenase type 3 (17beta-HSD3) is expressed at high levels in the testes and seminal vesicles but has also been shown to be present in prostate tissue, suggesting its potential involvement in both gonadal and non-gonadal testosterone biosynthesis. The role of 17beta-HSD3 in testosterone biosynthesis makes this enzyme an attractive molecular target for small molecule inhibitors for the treatment of prostate cancer. Here we report the design of selective inhibitors of 17beta-HSD3 as potential anti-cancer agents. Due to 17beta-HSD3 being a membrane-bound protein a crystal structure is not yet available. A homology model of 17beta-HSD3 has been built to aid structure-based drug design. This model has been used with docking studies to identify a series of lead compounds that may give an insight as to how inhibitors interact with the active site. Compound 1 was identified as a potent selective inhibitor of 17beta-HSD3 with an IC(50)=700nM resulting in the discovery of a novel lead series for further optimisation. Using our homology model as a tool for inhibitor design compound 5 was discovered as a novel potent and selective inhibitor of 17beta-HSD3 with an IC(50) approximately 200nM.


Subject(s)
17-Hydroxysteroid Dehydrogenases/antagonists & inhibitors , Drug Design , Enzyme Inhibitors/pharmacology , 17-Hydroxysteroid Dehydrogenases/classification , Azepines/chemical synthesis , Azepines/chemistry , Azepines/pharmacology , Catalytic Domain , Cell Line , Enzyme Inhibitors/chemistry , Humans , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Piperidines/chemical synthesis , Piperidines/chemistry , Piperidines/pharmacology , Structural Homology, Protein
3.
Mol Cell Endocrinol ; 301(1-2): 251-8, 2009 Mar 25.
Article in English | MEDLINE | ID: mdl-18786604

ABSTRACT

17beta-Hydroxysteroid dehydrogenases (17beta-HSDs) are responsible for the pre-receptor reduction/oxidation of steroids at the 17-position into active/inactive hormones, and the 15 known enzymes vary in their substrate specificity, localisation, and directional activity. 17beta-HSD Type 3 (17beta-HSD3) has been seen to be over-expressed in prostate cancer, and catalyses the reduction of androstenedione (Adione) to testosterone (T), which stimulates prostate tumour growth. Specific inhibitors of 17beta-HSD3 may have a role in the treatment of hormone-dependent prostate cancer and benign prostate hyperplasia, and also have potential as male anti-fertility agents. A 293-EBNA-based cell line with stable expression of transfected human 17beta-HSD3 was created and used to develop a whole cell radiometric TLC-based assay to assess the 17beta-HSD3 inhibitory potency of a series of compounds. STX2171 and STX2624 (IC(50) values in the 200-450nM range) were two of several active inhibitors identified. In similar TLC-based assays these compounds were found to be inactive against 17beta-HSD1 and 17beta-HSD2, indicating selectivity. A novel proof of concept model was developed to study the efficacy of the compounds in vitro using the androgen receptor positive hormone-dependent prostate cancer cell line, LNCaPwt, and its derivative, LNCaP[17beta-HSD3], transfected and selected for stable expression of 17beta-HSD3. The proliferation of the parental cell line was most efficiently stimulated by 5alpha-dihydrotestosterone (DHT), but the LNCaP[17beta-HSD3] cells were equally stimulated by Adione, indicating that 17beta-HSD3 efficiently converts Adione to T in this model. Adione-stimulated proliferation of LNCaP[17beta-HSD3] cells was inhibited in the presence of either STX2171 or STX2624. The compounds alone neither stimulated proliferation of the cells nor caused significant cell death, indicating that they are non-androgenic with low cytotoxicity. STX2171 inhibited Adione-stimulated growth of xenografts established from LNCaPwt cells in castrated mice in vivo. In conclusion, a primary screening assay and proof of concept model have been developed to study the efficacy of 17beta-HSD3 inhibitory compounds, which may have a role in the treatment of hormone-dependent cancer. Active compounds are selective for 17beta-HSD3 over 17beta-HSD1 and 17beta-HSD2, non-androgenic with low toxicity, and efficacious in both an in vitro proof of concept model and in an in vivo tumour model.


Subject(s)
17-Hydroxysteroid Dehydrogenases/antagonists & inhibitors , Drug Evaluation, Preclinical , Enzyme Inhibitors/analysis , Enzyme Inhibitors/pharmacology , Hormones/pharmacology , Prostatic Neoplasms/enzymology , 17-Hydroxysteroid Dehydrogenases/classification , Animals , Antineoplastic Agents/analysis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Disease Models, Animal , Enzyme Inhibitors/chemistry , Humans , Male , Mice , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Transfection , Xenograft Model Antitumor Assays
4.
Mol Cancer Ther ; 7(8): 2435-44, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18723489

ABSTRACT

An improved steroid sulfatase inhibitor was prepared by replacing the N-propyl group of the second-generation steroid-like inhibitor (2) with a N-3,3,3-trifluoropropyl group to give (10). This compound is 5-fold more potent in vitro, completely inhibits rat liver steroid sulfatase activity after a single oral dose of 0.5 mg/kg, and exhibits a significantly longer duration of inhibition over (2). These biological properties are attributed to the increased lipophilicity and metabolic stability of (10) rendered by its trifluoropropyl group and also the potential H-bonding between its fluorine atom(s) and Arg(98) in the active site of human steroid sulfatase. Like other sulfamates, (10) is expected to be sequestered, and transported by, erythrocytes in vivo because it inhibits human carbonic anhydrase II (hCAII) potently (IC(50), 3 nmol/L). A congener (4), which possesses a N-(pyridin-3-ylmethyl) substituent, is even more active (IC(50), 0.1 nmol/L). To rationalize this, the hCAII-(4) adduct, obtained by cocrystallization, reveals not only the sulfamate group and the backbone of (4) interacting with the catalytic site and the associated hydrophobic pocket, respectively, but also the potential H-bonding between the N-(pyridin-3-ylmethyl) group and Nepsilon(2) of Gln(136). Like (2), both (10) and its phenolic precursor (9) are non-estrogenic using a uterine weight gain assay. In summary, a highly potent, long-acting, and nonestrogenic steroid sulfatase inhibitor was designed with hCAII inhibitory properties that should positively influence in vivo behavior. Compound (10) and other related inhibitors of this structural class further expand the armory of steroid sulfatase inhibitors against hormone-dependent breast cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Enzyme Inhibitors/pharmacology , Fluorine/chemistry , Steryl-Sulfatase/antagonists & inhibitors , Animals , Chromatography, Liquid , Crystallography, X-Ray , Female , Humans , Magnetic Resonance Spectroscopy , Models, Molecular , Protein Conformation , Rats , Rats, Wistar , Spectrometry, Mass, Electrospray Ionization , Steryl-Sulfatase/chemistry
5.
Chem Commun (Camb) ; (20): 2550-1, 2003 Oct 21.
Article in English | MEDLINE | ID: mdl-14594275

ABSTRACT

Condensations between the tin(II) enolate 11 of ethyl N-tosylglycinate and conjugated ynals 12 and ynones 14 are highly diastereoselective, in favour of the anti-isomers 13 and 15; similar reactions of enals and enones 17 show lower but still useful levels of anti-stereoselectivity.


Subject(s)
Amino Acids/chemistry , Amino Acids/chemical synthesis , Esters/chemistry , Glycine/analogs & derivatives , Glycine/chemistry , Organotin Compounds/chemistry , Alkenes/chemistry , Alkynes/chemistry , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...