Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Electroanal Chem (Lausanne) ; 782: 174-181, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-28413373

ABSTRACT

Electrochemical impedance spectroscopy (EIS) is used to compare the apparent electron transfer rate constant (kapp) for a series of alkanethiol and of carbohydrate-terminated alkanethiol self-assembled monolayers (SAMs) on both flat gold and on nanoporous gold (np-Au). Using the surface area for np-Au determined by oxide stripping, the values of kapp for the alkanethiol modified np-Au are initially over two orders of magnitude smaller than the values found on flat Au. This result provides evidence that the diffusing redox probe Fe(CN)63-/4- only accesses a fraction of the np-Au surface after alkanethiol modification suggesting very limited wetting of the internal pores due to the hydrophobic nature of these surfaces. In contrast, for np-Au modified by carbohydrate-terminated (mannose or galactose) alkanethiols the values of kapp are about 10-40 fold smaller than on flat gold, suggesting more extensive access of the diffusing redox probe within the pores and better but still incomplete wetting, a result also found for modification of np-Au with mercaptododecanoic acid. A short chain PEG thiol derivative is found to result in a comparison of kapp values that suggests nearly complete wetting of the internal pores for this highly hydrophilic derivative. These results are of significance for the potential applications of SAM modified np-Au in electrochemical sensors, especially for those based on carbohydrate-protein recognition, or those of np-Au modified by SAMs with polar terminal groups.

2.
Nanotechnology ; 26(8): 085602, 2015 Feb 27.
Article in English | MEDLINE | ID: mdl-25649027

ABSTRACT

An electrochemical method for annealing the pore sizes of nanoporous gold (NPG) is reported. The pore sizes of NPG can be increased by electrochemical cycling with the upper potential limit being just at the onset of gold oxide formation. This study has been performed in electrolyte solutions including potassium chloride, sodium nitrate and sodium perchlorate. Scanning electron microscopy images have been used for ligament and pore size analysis. We examine the modifications of NPG due to annealing using electrochemical impedance spectroscopy, and cyclic voltammetry and offer a comparison of the surface coverage using the gold oxide stripping method as well as the method in which electrochemically accessible surface area is determined by using a diffusing redox probe. The effect of additives adsorbed on the NPG surface when subjected to annealing in different electrolytes as well as the subsequent structural changes in NPG are also reported. The effect of the annealing process on the application of NPG as a substrate for glucose electro-oxidation is briefly examined.


Subject(s)
Dielectric Spectroscopy/methods , Gold/chemistry , Metal Nanoparticles/chemistry , Biosensing Techniques , Glucose/analysis , Microscopy, Electron, Scanning , Porosity
3.
Carbohydr Res ; 405: 55-65, 2015 Mar 20.
Article in English | MEDLINE | ID: mdl-25442712

ABSTRACT

Localized surface plasmon resonance (LSPR) spectroscopy is a label-free chemical and biological molecular sensing technique whose sensitivity depends upon development of nanostructured transducers. Herein, we report an electrodeposition method for fabricating nanostructured gold films (NGFs) that can be used as transducers in LSPR spectroscopy. The NGF was prepared by electrodepositing gold from potassium dicyanoaurate solution onto a flat gold surface using two sequential controlled potential steps. Imaging by scanning electron microscopy reveals a morphology consisting of randomly configured block-like nanostructures. The bulk refractive index sensitivity of the prepared NGF is 100±2 nmRIU(-1) and the initial peak in the reflectance spectrum is at 518±1 nm under N2(g). The figure of merit is 1.7. In addition, we have studied the interaction between carbohydrate (mannose) and lectin (Concanavalin A) on the NGF surface using LSPR spectroscopy by measuring the interaction of 8-mercaptooctyl-α-d-mannopyranoside (αMan-C8-SH) with Concanavalin A by first immobilizing αMan-C8-SH in mixed SAMs with 3,6-dioxa-8-mercaptooctanol (TEG-SH) on the NGF surface. The interaction of Con A with the mixed SAMs is confirmed using electrochemical impedance spectroscopy. Finally, the NGF surface was regenerated to its original sensitivity by removing the SAM and the bound biomolecules. The results from these experiments contribute toward the development of inexpensive LSPR based sensors that could be useful for studying glycan-protein interactions and other bioanalytical purposes.


Subject(s)
Carbohydrate Metabolism , Concanavalin A/metabolism , Gold/chemistry , Nanostructures/chemistry , Surface Plasmon Resonance , Electrochemistry , Electroplating , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...