Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
BMC Plant Biol ; 21(1): 424, 2021 Sep 18.
Article in English | MEDLINE | ID: mdl-34537020

ABSTRACT

BACKGROUND: Miniature inverted-repeat transposable elements (MITEs) are non-autonomous DNA transposable elements that play important roles in genome organization and evolution. Genome-wide identification and characterization of MITEs provide essential information for understanding genome structure and evolution. RESULTS: We performed genome-wide identification and characterization of MITEs in the pineapple genome. The top two MITE families, accounting for 29.39% of the total MITEs and 3.86% of the pineapple genome, have insertion preference in (TA) n dinucleotide microsatellite regions. We therefore named these MITEs A. comosus microsatellite-associated MITEs (Ac-mMITEs). The two Ac-mMITE families, Ac-mMITE-1 and Ac-mMITE-2, shared sequence similarity in the terminal inverted repeat (TIR) regions, suggesting that these two Ac-mMITE families might be derived from a common or closely related autonomous elements. The Ac-mMITEs are frequently clustered via adjacent insertions. Among the 21,994 full-length Ac-mMITEs, 46.1% of them were present in clusters. By analyzing the Ac-mMITEs without (TA) n microsatellite flanking sequences, we found that Ac-mMITEs were likely derived from Mutator-like DNA transposon. Ac-MITEs showed highly polymorphic insertion sites between cultivated pineapples and their wild relatives. To better understand the evolutionary history of Ac-mMITEs, we filtered and performed comparative analysis on the two distinct groups of Ac-mMITEs, microsatellite-targeting MITEs (mt-MITEs) that are flanked by dinucleotide microsatellites on both sides and mutator-like MITEs (ml-MITEs) that contain 9/10 bp TSDs. Epigenetic analysis revealed a lower level of host-induced silencing on the mt-MITEs in comparison to the ml-MITEs, which partially explained the significantly higher abundance of mt-MITEs in pineapple genome. The mt-MITEs and ml-MITEs exhibited differential insertion preference to gene-related regions and RNA-seq analysis revealed their differential influences on expression regulation of nearby genes. CONCLUSIONS: Ac-mMITEs are the most abundant MITEs in the pineapple genome and they were likely derived from Mutator-like DNA transposon. Preferential insertion in (TA) n microsatellite regions of Ac-mMITEs occurred recently and is likely the result of damage-limiting strategy adapted by Ac-mMITEs during co-evolution with their host. Insertion in (TA) n microsatellite regions might also have promoted the amplification of mt-MITEs. In addition, mt-MITEs showed no or negligible impact on nearby gene expression, which may help them escape genome control and lead to their amplification.


Subject(s)
Ananas/genetics , DNA Transposable Elements/genetics , Inverted Repeat Sequences , Microsatellite Repeats , Epigenesis, Genetic , Evolution, Molecular , Genome, Plant , Terminal Repeat Sequences
2.
Sci Total Environ ; 789: 148051, 2021 May 27.
Article in English | MEDLINE | ID: mdl-34323847

ABSTRACT

The state of Punjab has a dominant agrarian economy and is considered India's bread basket. However, it is now under the problem of falling agro-economy primarily because of pervasive depletion of groundwater levels and deteriorating groundwater quality in south-west Punjab, but increasing salinity is a major concern. The irrigation requirements of crops are fulfilled by groundwater and canal water but the introduction of canal irrigation has led to waterlogging and subsequent salinization rendering large fertile-land areas becoming unproductive mainly in the south-western part of Punjab. There was an apprehension that excessive withdrawal of groundwater might have caused a reversal of natural groundwater flow pattern that might have caused ingress of saline water into fresh groundwater region of central Punjab. To address the apprehension related to the rise in groundwater salinity and its subsequent ingression in the fresh-water zone and suggest suitable management solutions, a study was undertaken to analyse the data related to salinity, isotopes, land-use and land cover (LULC) along with field and laboratory experimental results. The depth-wise isotope analysis shows that there is a large variation in isotopic signatures of shallow and intermediate aquifers and it decreases with the depth of aquifers (150-250 m). It appears that very deep groundwater (>250 m) is relatively isolated and does not show a large variation or mixing effect. Tritium analysis shows that dynamic groundwater is actively recharged through canal, river, and/or rain. The presence of modern groundwater at deeper depth indicates a good interconnection between shallow and deep groundwater. Interpretations of the results show that the canal is the main source of groundwater recharge in south-west Punjab and the evaporation process is responsible for increasing the salinity hazard. In the central parts of Punjab, groundwater and rain are the main sources of groundwater recharge, while rain is the main source of groundwater recharge in the Kandi area. In the south-west Punjab, some primary salinity has formed as a result of mineral dissolution which has further increased due to evaporative enrichment.

3.
Sci Rep ; 11(1): 5854, 2021 03 12.
Article in English | MEDLINE | ID: mdl-33712672

ABSTRACT

Sex chromosome evolution results in the disparity in gene content between heterogametic sex chromosomes and creates the need for dosage compensation to counteract the effects of gene dose imbalance of sex chromosomes in males and females. It is not known at which stage of sex chromosome evolution dosage compensation would evolve. We used global gene expression profiling in male and female papayas to assess gene expression patterns of sex-linked genes on the papaya sex chromosomes. By analyzing expression ratios of sex-linked genes to autosomal genes and sex-linked genes in males relative to females, our results showed that dosage compensation was regulated on a gene-by-gene level rather than whole sex-linked region in papaya. Seven genes on the papaya X chromosome exhibited dosage compensation. We further compared gene expression ratios in the two evolutionary strata. Y alleles in the older evolutionary stratum showed reduced expression compared to X alleles, while Y alleles in the younger evolutionary stratum showed elevated expression compared to X alleles. Reduced expression of Y alleles in the older evolutionary stratum might be caused by accumulation of deleterious mutations in regulatory regions or transposable element-mediated methylation spreading. Most X-hemizygous genes exhibited either no or very low expression, suggesting that gene silencing might play a role in maintaining transcriptional balance between females and males.


Subject(s)
Carica/genetics , Dosage Compensation, Genetic , Gene Expression Regulation, Plant , Transcription, Genetic , Alleles , Chromosomes, Plant/genetics , Flowers/genetics , Genes, Plant , Plant Leaves/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Recombination, Genetic/genetics
4.
Comput Biol Chem ; 87: 107306, 2020 Jun 10.
Article in English | MEDLINE | ID: mdl-32559639

ABSTRACT

High mobility group (HMG) proteins are the major architectural proteins. Among HMG proteins, High Mobility Group A (HMGA) is characterized by AT-hook (ATH) motifs, which have an affinity for AT-rich DNA. In this study, we characterized the plant HMGAs from the Poaceae family using in silico methods. The protein sequences for rice HMGAs were retrieved and the corresponding orthologs from grasses were extracted. The phylogenetic analysis identified three major evolutionary clades of grass HMGAs and their ATH motif analysis revealed that HMGAs from clade 1 and 2, except for clade 2 HMGAs, are devoid of high-affinity DNA-binding domain. The clade 2 HMGAs also displayed a highly conserved length of all the spacers and the length of the C-terminal tail following the last ATH. Moreover, the C-terminal tail in clade 2 HMGAs is smaller than HMGAs from any other clade. Unlike clade 2, other clades of Poaceae HMGAs displayed high variability in the length of spacers. Despite several differences among HMGAs of different clades in Poaceae, the H1/H5 domain was found to be highly conserved. This study has revealed the detailed analyses of Poaceae HMGAs and it will be useful for further investigation aiming at the determination of precise biological functions and molecular mechanisms of grass HMGAs.

5.
New Phytol ; 225(5): 2006-2021, 2020 03.
Article in English | MEDLINE | ID: mdl-31733154

ABSTRACT

The papaya diminutive mutant exhibits miniature stature, retarded growth and reduced fertility. This undesirable mutation appeared in the variety 'Sunset', the progenitor of the transgenic line 'SunUp', and was accidentally carried forward into breeding populations. The diminutive mutation was mapped to chromosome 2 and fine mapped to scaffold 25. Sequencing of a bacterial artificial chromosome in the fine mapped region led to the identification of the target gene responsible for the diminutive mutant, a gene orthologous to MMS19 with a 36.8 kb deletion co-segregating with the diminutive mutant. The genomic sequence of CpMMS19 is 62 kb, consisting of 20 exons and 19 introns. It encodes a protein of 1143 amino acids while the diminutive allele encodes a truncated protein of 287 amino acids. Expression of the full-length CpMMS19 was able to complement the thermosensitive growth of the yeast mms19 deletion mutant while expression of the diminutive allele resulted in increased thermosensitivity. Over-expression of the diminutive allele in Arabidopsis met18 mutant results in a high frequency of seed abortion. The papaya diminutive phenotype is caused by an alteration in gene function rather than a loss-of-function mutation. SCAR (sequence characterized amplified region) markers were developed for rapid detection of the diminutive allele in breeding populations.


Subject(s)
Carica , Alleles , Carica/genetics , Cloning, Molecular , Genes, Plant , Mutation/genetics , Plant Breeding
6.
Nat Genet ; 51(10): 1549-1558, 2019 10.
Article in English | MEDLINE | ID: mdl-31570895

ABSTRACT

Domestication of clonally propagated crops such as pineapple from South America was hypothesized to be a 'one-step operation'. We sequenced the genome of Ananas comosus var. bracteatus CB5 and assembled 513 Mb into 25 chromosomes with 29,412 genes. Comparison of the genomes of CB5, F153 and MD2 elucidated the genomic basis of fiber production, color formation, sugar accumulation and fruit maturation. We also resequenced 89 Ananas genomes. Cultivars 'Smooth Cayenne' and 'Queen' exhibited ancient and recent admixture, while 'Singapore Spanish' supported a one-step operation of domestication. We identified 25 selective sweeps, including a strong sweep containing a pair of tandemly duplicated bromelain inhibitors. Four candidate genes for self-incompatibility were linked in F153, but were not functional in self-compatible CB5. Our findings support the coexistence of sexual recombination and a one-step operation in the domestication of clonally propagated crops. This work guides the exploration of sexual and asexual domestication trajectories in other clonally propagated crops.


Subject(s)
Ananas/genetics , Crops, Agricultural/genetics , Domestication , Genome, Plant , Plant Proteins/genetics , Plants, Genetically Modified/genetics , Quantitative Trait, Heritable , Ananas/growth & development , Bromelains/metabolism , Crops, Agricultural/growth & development , Gene Expression Regulation, Plant , Phenotype , Plants, Genetically Modified/growth & development , Population Dynamics , Sugars/metabolism
7.
Front Plant Sci ; 9: 1414, 2018.
Article in English | MEDLINE | ID: mdl-30319674

ABSTRACT

Sugarcane (Saccharum spp. hybrids) is an economically important crop widely grown in tropical and subtropical regions for sugar and ethanol production. However, the large genome size, high ploidy level, interspecific hybridization and aneuploidy make sugarcane one of the most complex genomes and have long hampered genome research in sugarcane. Modern sugarcane cultivars are derived from interspecific hybridization between S. officinarum and S. spontaneum with 80-90% of the genome from S. officinarum and 10-20% of the genome from S. spontaneum. We constructed bacterial artificial chromosome (BAC) libraries of S. officinarum variety LA Purple (2n = 8x = 80) and S. spontaneum haploid clone AP85-441 (2n = 4x = 32), and selected and sequenced 97 BAC clones from the two Saccharum BAC libraries. A total of 5,847,280 bp sequence from S. officinarum and 5,011,570 bp from S. spontaneum were assembled and 749 gene models were annotated in these BACs. A relatively higher gene density and lower repeat content were observed in S. spontaneum BACs than in S. officinarum BACs. Comparative analysis of syntenic regions revealed a high degree of collinearity in genic regions between Saccharum and Sorghum bicolor and between S. officinarum and S. spontaneum. In the syntenic regions, S. spontaneum showed expansion relative to S. officinarum, and both S. officinarum and S. spontaneum showed expansion relative to sorghum. Among the 75 full-length LTR retrotransposons identified in the Saccharum BACs, none of them are older than 2.6 mys and no full-length LTR elements are shared between S. officinarum and S. spontaneum. In addition, divergence time estimated using a LTR junction marker and a syntenic gene shared by 3 S. officinarum and 1 S. spontaneum BACs revealed that the S. spontaneum intergenic region was distant to those from the 3 homologous regions in S. officinarum. Our results suggested that S. officinarum and S. spontaneum experienced at least two rounds of independent polyploidization in each lineage after their divergence from a common ancestor.

8.
BMC Genomics ; 19(1): 26, 2018 01 06.
Article in English | MEDLINE | ID: mdl-29306330

ABSTRACT

BACKGROUND: Papain-like cysteine proteases (PLCPs), a large group of cysteine proteases structurally related to papain, play important roles in plant development, senescence, and defense responses. Papain, the first cysteine protease whose structure was determined by X-ray crystallography, plays a crucial role in protecting papaya from herbivorous insects. Except the four major PLCPs purified and characterized in papaya latex, the rest of the PLCPs in papaya genome are largely unknown. RESULTS: We identified 33 PLCP genes in papaya genome. Phylogenetic analysis clearly separated plant PLCP genes into nine subfamilies. PLCP genes are not equally distributed among the nine subfamilies and the number of PLCPs in each subfamily does not increase or decrease proportionally among the seven selected plant species. Papaya showed clear lineage-specific gene expansion in the subfamily III. Interestingly, all four major PLCPs purified from papaya latex, including papain, chymopapain, glycyl endopeptidase and caricain, were grouped into the lineage-specific expansion branch in the subfamily III. Mapping PLCP genes on chromosomes of five plant species revealed that lineage-specific expansions of PLCP genes were mostly derived from tandem duplications. We estimated divergence time of papaya PLCP genes of subfamily III. The major duplication events leading to lineage-specific expansion of papaya PLCP genes in subfamily III were estimated at 48 MYA, 34 MYA, and 16 MYA. The gene expression patterns of the papaya PLCP genes in different tissues were assessed by transcriptome sequencing and qRT-PCR. Most of the papaya PLCP genes of subfamily III expressed at high levels in leaf and green fruit tissues. CONCLUSIONS: Tandem duplications played the dominant role in affecting copy number of PLCPs in plants. Significant variations in size of the PLCP subfamilies among species may reflect genetic adaptation of plant species to different environments. The lineage-specific expansion of papaya PLCPs of subfamily III might have been promoted by the continuous reciprocal selective effects of herbivore attack and plant defense.


Subject(s)
Carica/enzymology , Cell Lineage , Gene Duplication , Papain/genetics , Plant Proteins/genetics , Carica/genetics , Genome, Plant , High-Throughput Nucleotide Sequencing/methods , Multigene Family , Papain/classification , Phylogeny
9.
Genome Biol Evol ; 9(9): 2170-2190, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28922793

ABSTRACT

Circadian clock provides fitness advantage by coordinating internal metabolic and physiological processes to external cyclic environments. Core clock components exhibit daily rhythmic changes in gene expression, and the majority of them are transcription factors (TFs) and transcription coregulators (TCs). We annotated 1,398 TFs from 67 TF families and 80 TCs from 20 TC families in pineapple, and analyzed their tissue-specific and diurnal expression patterns. Approximately 42% of TFs and 45% of TCs displayed diel rhythmic expression, including 177 TF/TCs cycling only in the nonphotosynthetic leaf tissue, 247 cycling only in the photosynthetic leaf tissue, and 201 cycling in both. We identified 68 TF/TCs whose cycling expression was tightly coupled between the photosynthetic and nonphotosynthetic leaf tissues. These TF/TCs likely coordinate key biological processes in pineapple as we demonstrated that this group is enriched in homologous genes that form the core circadian clock in Arabidopsis and includes a STOP1 homolog. Two lines of evidence support the important role of the STOP1 homolog in regulating CAM photosynthesis in pineapple. First, STOP1 responds to acidic pH and regulates a malate channel in multiple plant species. Second, the cycling expression pattern of the pineapple STOP1 and the diurnal pattern of malate accumulation in pineapple leaf are correlated. We further examined duplicate-gene retention and loss in major known circadian genes and refined their evolutionary relationships between pineapple and other plants. Significant variations in duplicate-gene retention and loss were observed for most clock genes in both monocots and dicots.


Subject(s)
Ananas/physiology , Circadian Clocks , Gene Expression Regulation, Plant , Plant Proteins/genetics , Transcription Factors/genetics , Ananas/genetics , Gene Expression Profiling , Genome, Plant , Organ Specificity
10.
BMC Genomics ; 17: 446, 2016 06 10.
Article in English | MEDLINE | ID: mdl-27287040

ABSTRACT

BACKGROUND: Sugarcane is a major sugar and biofuel crop, but genomic research and molecular breeding have lagged behind other major crops due to the complexity of auto-allopolyploid genomes. Sugarcane cultivars are frequently aneuploid with chromosome number ranging from 100 to 130, consisting of 70-80 % S. officinarum, 10-20 % S. spontaneum, and 10 % recombinants between these two species. Analysis of a genomic region in the progenitor autoploid genomes of sugarcane hybrid cultivars will reveal the nature and divergence of homologous chromosomes. RESULTS: To investigate the origin and evolution of haplotypes in the Bru1 genomic regions in sugarcane cultivars, we identified two BAC clones from S. spontaneum and four from S. officinarum and compared to seven haplotype sequences from sugarcane hybrid R570. The results clarified the origin of seven homologous haplotypes in R570, four haplotypes originated from S. officinarum, two from S. spontaneum and one recombinant.. Retrotransposon insertions and sequences variations among the homologous haplotypes sequence divergence ranged from 18.2 % to 60.5 % with an average of 33.7 %. Gene content and gene structure were relatively well conserved among the homologous haplotypes. Exon splitting occurred in haplotypes of the hybrid genome but not in its progenitor genomes. Tajima's D analysis revealed that S. spontaneum hapotypes in the Bru1 genomic regions were under strong directional selection. Numerous inversions, deletions, insertions and translocations were found between haplotypes within each genome. CONCLUSIONS: This is the first comparison among haplotypes of a modern sugarcane hybrid and its two progenitors. Tajima's D results emphasized the crucial role of this fungal disease resistance gene for enhancing the fitness of this species and indicating that the brown rust resistance gene in R570 is from S. spontaneum. Species-specific InDel, sequences similarity and phylogenetic analysis of homologous genes can be used for identifying the origin of S. spontaneum and S. officinarum haplotype in Saccharum hybrids. Comparison of exon splitting among the homologous haplotypes suggested that the genome rearrangements in Saccharum hybrids after hybridization. The combined minimum difference at 19.5 % among homologous chromosomes in S. officinarum would be sufficient for proper genome assembly of this autopolyploid genome. Retrotransposon insertions and sequences variations among the homologous haplotypes sequence divergence may allow sequencing and assembling the autopolyploid Saccharum genomes and the auto-allopolyploid hybrid genomes using whole genome shotgun sequencing.


Subject(s)
Genome, Plant , Genomics , Plant Proteins/genetics , Saccharum/genetics , Base Composition , Computational Biology/methods , DNA Transposable Elements , Databases, Nucleic Acid , Evolution, Molecular , Gene Order , Genomics/methods , Haplotypes , Molecular Sequence Annotation , Mutagenesis, Insertional , Polymorphism, Single Nucleotide , Polyploidy , Sequence Homology, Nucleic Acid
11.
Beilstein J Nanotechnol ; 7: 501-10, 2016.
Article in English | MEDLINE | ID: mdl-27335741

ABSTRACT

Zinc oxide (ZnO) and bacteriorhodopsin (bR) hybrid nanostructures were fabricated by immobilizing bR on ZnO thin films and ZnO nanorods. The morphological and spectroscopic analysis of the hybrid structures confirmed the ZnO thin film/nanorod growth and functional properties of bR. The photoactivity results of the bR protein further corroborated the sustainability of its charge transport property and biological activity. When exposed to ethanol vapour (reducing gas) at low temperature (70 °C), the fabricated sensing elements showed a significant increase in resistivity, as opposed to the conventional n-type behaviour of bare ZnO nanostructures. This work opens up avenues towards the fabrication of low temperature, photoactivated, nanomaterial-biomolecule hybrid gas sensors.

12.
Front Plant Sci ; 7: 308, 2016.
Article in English | MEDLINE | ID: mdl-27047500

ABSTRACT

The ancestral centromeres of maize contain long stretches of the tandemly arranged CentC repeat. The abundance of tandem DNA repeats and centromeric retrotransposons (CR) has presented a significant challenge to completely assembling centromeres using traditional sequencing methods. Here, we report a nearly complete assembly of the 1.85 Mb maize centromere 10 from inbred B73 using PacBio technology and BACs from the reference genome project. The error rates estimated from overlapping BAC sequences are 7 × 10(-6) and 5 × 10(-5) for mismatches and indels, respectively. The number of gaps in the region covered by the reassembly was reduced from 140 in the reference genome to three. Three expressed genes are located between 92 and 477 kb from the inferred ancestral CentC cluster, which lies within the region of highest centromeric repeat density. The improved assembly increased the count of full-length CR from 5 to 55 and revealed a 22.7 kb segmental duplication that occurred approximately 121,000 years ago. Our analysis provides evidence of frequent recombination events in the form of partial retrotransposons, deletions within retrotransposons, chimeric retrotransposons, segmental duplications including higher order CentC repeats, a deleted CentC monomer, centromere-proximal inversions, and insertion of mitochondrial sequences. Double-strand DNA break (DSB) repair is the most plausible mechanism for these events and may be the major driver of centromere repeat evolution and diversity. In many cases examined here, DSB repair appears to be mediated by microhomology, suggesting that tandem repeats may have evolved to efficiently repair frequent DSBs in centromeres.

13.
Nat Genet ; 47(12): 1435-42, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26523774

ABSTRACT

Pineapple (Ananas comosus (L.) Merr.) is the most economically valuable crop possessing crassulacean acid metabolism (CAM), a photosynthetic carbon assimilation pathway with high water-use efficiency, and the second most important tropical fruit. We sequenced the genomes of pineapple varieties F153 and MD2 and a wild pineapple relative, Ananas bracteatus accession CB5. The pineapple genome has one fewer ancient whole-genome duplication event than sequenced grass genomes and a conserved karyotype with seven chromosomes from before the ρ duplication event. The pineapple lineage has transitioned from C3 photosynthesis to CAM, with CAM-related genes exhibiting a diel expression pattern in photosynthetic tissues. CAM pathway genes were enriched with cis-regulatory elements associated with the regulation of circadian clock genes, providing the first cis-regulatory link between CAM and circadian clock regulation. Pineapple CAM photosynthesis evolved by the reconfiguration of pathways in C3 plants, through the regulatory neofunctionalization of preexisting genes and not through the acquisition of neofunctionalized genes via whole-genome or tandem gene duplication.


Subject(s)
Ananas/genetics , Evolution, Molecular , Gene Regulatory Networks , Genetic Markers , Genome, Plant , Photosynthesis/physiology , Chromosome Mapping , Epigenomics , Gene Expression Regulation, Plant , Genomics/methods , High-Throughput Nucleotide Sequencing/methods
14.
Neural Netw ; 71: 142-9, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26356597

ABSTRACT

The paper presents a novel encoding scheme for neuronal code generation for odour recognition using an electronic nose (EN). This scheme is based on channel encoding using multiple Gaussian receptive fields superimposed over the temporal EN responses. The encoded data is further applied to a spiking neural network (SNN) for pattern classification. Two forms of SNN, a back-propagation based SpikeProp and a dynamic evolving SNN are used to learn the encoded responses. The effects of information encoding on the performance of SNNs have been investigated. Statistical tests have been performed to determine the contribution of the SNN and the encoding scheme to overall odour discrimination. The approach has been implemented in odour classification of orthodox black tea (Kangra-Himachal Pradesh Region) thereby demonstrating a biomimetic approach for EN data analysis.


Subject(s)
Electronic Nose , Neural Networks, Computer , Odorants , Tea , Algorithms , Biomimetics , Equipment Design , Normal Distribution , Nose , Olfactory Perception
15.
Genome Biol Evol ; 6(6): 1335-52, 2014 May 09.
Article in English | MEDLINE | ID: mdl-24814286

ABSTRACT

Centromeric retrotransposons (CRs) constitute a family of plant retroelements, some of which have the ability to target their insertion almost exclusively to the functional centromeres. Our exhaustive analysis of CR family members in four grass genomes revealed not only horizontal transfer (HT) of CR elements between the oryzoid and panicoid grass lineages but also their subsequent recombination with endogenous elements that in some cases created prolific recombinants in foxtail millet and sorghum. HT events are easily identifiable only in cases where host genome divergence significantly predates HT, thus documented HT events likely represent only a fraction of the total. If the more difficult to detect ancient HT events occurred at frequencies similar to those observable in present day grasses, the extant long terminal repeat retrotransposons represent the mosaic products of HT and recombination that are optimized for retrotransposition in their host genomes. This complicates not only phylogenetic analysis but also the establishment of a meaningful retrotransposon nomenclature, which we have nevertheless attempted to implement here. In contrast to the plant-centric naming convention used currently for CR elements, we classify elements primarily based on their phylogenetic relationships regardless of host plant, using the exhaustively studied maize elements assigned to six different subfamilies as a standard. The CR2 subfamily is the most widely distributed of the six CR subfamilies discovered in grass genomes to date and thus the most likely to play a functional role at grass centromeres.


Subject(s)
Centromere/genetics , Poaceae/genetics , Retroelements , Evolution, Molecular , Gene Transfer, Horizontal , Genome, Plant , Oryza/genetics , Phylogeny , Sorghum/genetics , Terminal Repeat Sequences , Zea mays/genetics
16.
BMC Genomics ; 14: 142, 2013 Mar 04.
Article in English | MEDLINE | ID: mdl-23452340

ABSTRACT

BACKGROUND: Tandem repeats are ubiquitous and abundant in higher eukaryotic genomes and constitute, along with transposable elements, much of DNA underlying centromeres and other heterochromatic domains. In maize, centromeric satellite repeat (CentC) and centromeric retrotransposons (CR), a class of Ty3/gypsy retrotransposons, are enriched at centromeres. Some satellite repeats have homology to retrotransposons and several mechanisms have been proposed to explain the expansion, contraction as well as homogenization of tandem repeats. However, the origin and evolution of tandem repeat loci remain largely unknown. RESULTS: CRM1TR and CRM4TR are novel tandem repeats that we show to be entirely derived from CR elements belonging to two different subfamilies, CRM1 and CRM4. Although these tandem repeats clearly originated in at least two separate events, they are derived from similar regions of their respective parent element, namely the long terminal repeat (LTR) and untranslated region (UTR). The 5' ends of the monomer repeat units of CRM1TR and CRM4TR map to different locations within their respective LTRs, while their 3' ends map to the same relative position within a conserved region of their UTRs. Based on the insertion times of heterologous retrotransposons that have inserted into these tandem repeats, amplification of the repeats is estimated to have begun at least ~4 (CRM1TR) and ~1 (CRM4TR) million years ago. Distinct CRM1TR sequence variants occupy the two CRM1TR loci, indicating that there is little or no movement of repeats between loci, even though they are separated by only ~1.4 Mb. CONCLUSIONS: The discovery of two novel retrotransposon derived tandem repeats supports the conclusions from earlier studies that retrotransposons can give rise to tandem repeats in eukaryotic genomes. Analysis of monomers from two different CRM1TR loci shows that gene conversion is the major cause of sequence variation. We propose that successive intrastrand deletions generated the initial repeat structure, and gene conversions increased the size of each tandem repeat locus.


Subject(s)
Centromere/genetics , Evolution, Molecular , Retroelements , Tandem Repeat Sequences , DNA, Plant/genetics , Haplotypes , Polymorphism, Single Nucleotide , Sequence Analysis, DNA , Zea mays/genetics
17.
Curr Opin Plant Biol ; 14(2): 217-22, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21411364

ABSTRACT

Centromeres were once thought to be boring structures on the chromosome involved with transmission through mitosis and meiosis. Recent data from a wide spectrum of organisms reveal an epigenetic component to centromere specification in that they can become inactive easily or form over unique DNA as neocentromeres. However, the constancy of centromere repeats at primary constrictions in most species, the fact that these repeats are transcribed and incorporated into the kinetochore, and the phenomenon of reactivation of formerly inactive centromeres at the same chromosomal sites suggests some type of role of DNA sequence or configuration in establishing the site of kinetochores. Here we present evidence for epigenetic and structural aspects involved with centromere activity in plants.


Subject(s)
Centromere/genetics , Chromosomes, Plant/genetics , Epigenesis, Genetic , Plants/genetics , Centromere/metabolism , Chromosomes, Plant/metabolism , Kinetochores , Meiosis/genetics , Plant Cells , Plants/metabolism
18.
PLoS Genet ; 5(11): e1000743, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19956743

ABSTRACT

We describe a comprehensive and general approach for mapping centromeres and present a detailed characterization of two maize centromeres. Centromeres are difficult to map and analyze because they consist primarily of repetitive DNA sequences, which in maize are the tandem satellite repeat CentC and interspersed centromeric retrotransposons of maize (CRM). Centromeres are defined epigenetically by the centromeric histone H3 variant, CENH3. Using novel markers derived from centromere repeats, we have mapped all ten centromeres onto the physical and genetic maps of maize. We were able to completely traverse centromeres 2 and 5, confirm physical maps by fluorescence in situ hybridization (FISH), and delineate their functional regions by chromatin immunoprecipitation (ChIP) with anti-CENH3 antibody followed by pyrosequencing. These two centromeres differ substantially in size, apparent CENH3 density, and arrangement of centromeric repeats; and they are larger than the rice centromeres characterized to date. Furthermore, centromere 5 consists of two distinct CENH3 domains that are separated by several megabases. Succession of centromere repeat classes is evidenced by the fact that elements belonging to the recently active recombinant subgroups of CRM1 colonize the present day centromeres, while elements of the ancestral subgroups are also found in the flanking regions. Using abundant CRM and non-CRM retrotransposons that inserted in and near these two centromeres to create a historical record of centromere location, we show that maize centromeres are fluid genomic regions whose borders are heavily influenced by the interplay of retrotransposons and epigenetic marks. Furthermore, we propose that CRMs may be involved in removal of centromeric DNA (specifically CentC), invasion of centromeres by non-CRM retrotransposons, and local repositioning of the CENH3.


Subject(s)
Biological Evolution , Centromere/genetics , Genetic Loci , Retroelements , Zea mays/genetics , Base Sequence , Centromere/ultrastructure , Chromosomes, Plant , DNA, Plant
19.
Indian J Exp Biol ; 46(9): 621-6, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18949890

ABSTRACT

In the present study, cell lysate and cell supernatant of the both strains i.e., virulent wild type (E156) and mutant (S30) vaccine strains of Salmonella enterica subspecies enterica serovar Abortusequi (S. Abortusequi), grown under varied in vivo and in vitro conditions were subjected to SDS PAGE and western blotting (using rabbit hyperimmune serum). Variation in growth conditions did not have any significant effect on expression of different proteins. SDS PAGE of E156 and S30 cell lysate (CL) revealed 26 and 28 bands, respectively with 3 prominent proteins of 71, 46 and 42 kDa in cell lysate of E 156 and 4 prominent proteins 71, 65, 46 and 40 kDa in S30 strain. The cell supernatant (CS) from both the strains, subjected to SDS PAGE, exhibited similarity in protein profile among these strains, however three bands of 65, 53 and 40 kDa were more prominent in CS preparation of S30, whereas a 56 kDa protein was prominent in CS of E156. Western blotting of E156 and S30 revealed 3 unique proteins of 65, 53 and 40 kDa present in CS preparation of S30 strains which could be used for differentiation of mutant and wild strains and also in development of test for differentiating vaccinated animals from naturally infected.


Subject(s)
Bacterial Proteins/analysis , Bacterial Proteins/metabolism , Salmonella Vaccines/genetics , Salmonella Vaccines/metabolism , Salmonella enterica/metabolism , Salmonella enterica/pathogenicity , Bacterial Proteins/genetics , Bacterial Proteins/immunology , Microbial Viability , Mutation/genetics , Salmonella enterica/genetics , Salmonella enterica/growth & development
20.
Proc Natl Acad Sci U S A ; 105(40): 15470-4, 2008 Oct 07.
Article in English | MEDLINE | ID: mdl-18832157

ABSTRACT

The term "C-value paradox" was coined by C. A. Thomas, Jr. in 1971 [Thomas CA (1971) Ann Rev Genetics 5:237-256] to describe the initially puzzling lack of correlation between an organism's genome size and its morphological complexity. Polyploidy and the expansion of repetitive DNA, primarily transposable elements, are two mechanisms that have since been found to account for this differential. While the inactivation of retrotransposons by methylation and their removal from the genome by illegitimate recombination have been well documented, the cause of the apparently periodic bursts of retrotranposon expansion is as yet unknown. We show that the expansion of the CRM1 retrotransposon subfamily in the ancient allotetraploid crop plant corn is linked to the repeated formation of novel recombinant elements derived from two parental retrotransposon genotypes, which may have been brought together during the hybridization of two sympatric species that make up the present day corn genome, thus revealing a unique mechanism linking polyploidy and retrotransposition.


Subject(s)
Retroelements/genetics , Sequence Deletion , Zea mays/genetics , DNA, Plant/genetics , Evolution, Molecular , Genome, Plant , Models, Genetic , Polyploidy , Recombination, Genetic , Terminal Repeat Sequences
SELECTION OF CITATIONS
SEARCH DETAIL
...