Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 13(15)2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37570574

ABSTRACT

The fabrication of Sb2Se3 thin-film solar cells deposited by a pulsed hybrid reactive magnetron sputtering (PHRMS) was proposed and examined for different growth conditions. The influence of growth temperature and Se pulse period were studied in terms of morphology, crystal structure, and composition. The Sb2Se3 growth showed to be dependent on the growth temperature, with a larger crystal size for growth at 270 °C. By controlling the Se pulse period, the crystal structure and crystal size could be modified as a function of the supplied Se amount. The solar cell performance for Sb2Se3 absorbers deposited at various temperatures, Se pulse periods and thicknesses were assessed through current-voltage characteristics. A power conversion efficiency (PCE) of 3.7% was achieved for a Sb2Se3 solar cell with 900 nm thickness, Sb2Se3 deposited at 270 °C and Se pulses with 0.1 s duration and period of 0.5 s. Finally, annealing the complete solar cell at 100 °C led to a further improvement of the Voc, leading to a PCE of 3.8%, slightly higher than the best reported Sb2Se3 solar cell prepared by sputtering without post-selenization.

2.
Nat Commun ; 11(1): 3634, 2020 Jul 20.
Article in English | MEDLINE | ID: mdl-32686684

ABSTRACT

The electrical and optoelectronic properties of materials are determined by the chemical potentials of their constituents. The relative density of point defects is thus controlled, allowing to craft microstructure, trap densities and doping levels. Here, we show that the chemical potentials of chalcogenide materials near the edge of their existence region are not only determined during growth but also at room temperature by post-processing. In particular, we study the generation of anion vacancies, which are critical defects in chalcogenide semiconductors and topological insulators. The example of CuInSe2 photovoltaic semiconductor reveals that single phase material crosses the phase boundary and forms surface secondary phases upon oxidation, thereby creating anion vacancies. The arising metastable point defect population explains a common root cause of performance losses. This study shows how selective defect annihilation is attained with tailored chemical treatments that mitigate anion vacancy formation and improve the performance of CuInSe2 solar cells.

3.
Nanoscale Adv ; 1(8): 3049-3055, 2019 Aug 06.
Article in English | MEDLINE | ID: mdl-36133579

ABSTRACT

We demonstrate the formation of three morphologies relevant for integration with miniaturized devices-microscale pillars, conformal coatings, and self-supported membranes-via template-directed self-organization of lead telluride (PbTe) colloidal nanocrystals (NCs). Optimizing the self-organization process towards producing one of these morphologies typically involves adjusting the surface chemistry of the particles, as a means of controlling the particle-particle and particle-template interactions. In contrast, we have produced each of the three morphologies of close-packed NCs by adjusting only the solvent and concentration of NCs, to ensure that the high quality of the ca. 10 nm PbTe NCs produced by hot-injection colloidal synthesis, which we used as model "building blocks," remains consistent across all three configurations. For the first two morphologies, the NCs were deposited as colloidal suspensions onto micropatterned silicon substrates. The microscale cuboid pillars (1 µm × 1 µm × 0.6 µm) were formed by depositing NC dispersions in toluene onto templates patterned with resist grid motifs, followed by the resist removal after the slow evaporation of toluene and formation of the micropillars. Conformal coatings were produced by switching the solvent from toluene to a faster drying hexane and pouring NC dispersions onto silicon templates with topographically patterned microstructures. In a similar process, self-supported NC membranes were formed from NC dispersions in hexane on the surface of diethylene glycol and transferred onto the micropatterned templates. The demonstrated combination of bottom-up self-organization with top-down micropatterned templates provides a scalable route for design and fabrication of NC ensembles in morphologies and form-factors that are compatible with their integration into miniaturized devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...