Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38867668

ABSTRACT

Adult rats exposed to hyperoxia (>95% O2) die from respiratory failure in 60-72 hours. However, rats preconditioned with >95% O2 for 48 hours followed by 24 hours in room air (H-T) acquire tolerance of hyperoxia, while rats preconditioned with 60% O2 for 7 days (H-S) become more susceptible. Our objective was to evaluate lung tissue mitochondrial bioenergetics in H-T and H-S rats. Bioenergetics were assessed in mitochondria isolated from lung tissue of H-T, H-S, and control rats. Expressions of complexes involved in oxidative phosphorylation (OxPhos) were measured in lung tissue homogenate. Pulmonary endothelial filtration coefficient (Kf) and tissue mitochondrial membrane potential (ΔΨm) were evaluated in isolated perfused lungs. Results show that ADP-induced state 3 OxPhos capacity (Vmax) decreased in H-S mitochondria but increased in H-T. ΔΨm repolarization time following ADP-stimulated depolarization increased in H-S mitochondria. Complex I expression decreased in H-T (38%) and H-S (43%) lung homogenate, whereas complex V expression increased (70%) in H-T lung homogenate. ΔΨm is unchanged in H-S and H-T lungs, but complex II has a larger contribution to ΔΨm in H-S than H-T lungs. Kf increased in H-S, but not H-T lungs. For H-T, increased complex V expression and Vmax counter the effect of the decrease in complex I expression on ΔΨm. A larger complex II contribution to ΔΨm along with decreased Vmax and increased Kf could make H-S rats more hyperoxia susceptible. Results are clinically relevant since ventilation with ≥60% O2 is often required for extended periods in Acute Respiratory Distress Syndrome patients.

2.
Technol Cancer Res Treat ; 22: 15330338231189593, 2023.
Article in English | MEDLINE | ID: mdl-37469184

ABSTRACT

INTRODUCTION: Radiation therapy for head and neck squamous cell carcinoma is constrained by radiotoxicity to normal tissue. We demonstrate 100 nm theranostic nanoparticles for image-guided radiation therapy planning and enhancement in rat head and neck squamous cell carcinoma models. METHODS: PEG conjugated theranostic nanoparticles comprising of Au nanorods coated with Gadolinium oxide layers were tested for radiation therapy enhancement in 2D cultures of OSC-19-GFP-luc cells, and orthotopic tongue xenografts in male immunocompromised Salt sensitive or SS rats via both intratumoral and intravenous delivery. The radiation therapy enhancement mechanism was investigated. RESULTS: Theranostic nanoparticles demonstrated both X-ray/magnetic resonance contrast in a dose-dependent manner. Magnetic resonance images depicted optimal tumor-to-background uptake at 4 h post injection. Theranostic nanoparticle + Radiation treated rats experienced reduced tumor growth compared to controls, and reduction in lung metastasis. CONCLUSIONS: Theranostic nanoparticles enable preprocedure radiotherapy planning, as well as enhance radiation treatment efficacy for head and neck tumors.


Subject(s)
Head and Neck Neoplasms , Mouth Neoplasms , Nanoparticles , Radiotherapy, Image-Guided , Humans , Male , Rats , Animals , X-Rays , Squamous Cell Carcinoma of Head and Neck/diagnostic imaging , Squamous Cell Carcinoma of Head and Neck/radiotherapy , Cell Line, Tumor , Magnetic Resonance Imaging/methods , Mouth Neoplasms/diagnostic imaging , Mouth Neoplasms/radiotherapy , Head and Neck Neoplasms/diagnostic imaging , Head and Neck Neoplasms/radiotherapy
SELECTION OF CITATIONS
SEARCH DETAIL
...