Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Brain Sci ; 13(4)2023 Mar 24.
Article in English | MEDLINE | ID: mdl-37190501

ABSTRACT

Despite the heavy burden of schizophrenia, research on biomarkers associated with its early course is still ongoing. Single-pulse Transcranial Magnetic Stimulation coupled with electroencephalography (TMS-EEG) has revealed that the main oscillatory frequency (or "natural frequency") is reduced in several frontal brain areas, including the premotor cortex, of chronic patients with schizophrenia. However, no study has explored the natural frequency at the beginning of illness. Here, we used TMS-EEG to probe the intrinsic oscillatory properties of the left premotor cortex in early-course schizophrenia patients (<2 years from onset) and age/gender-matched healthy comparison subjects (HCs). State-of-the-art real-time monitoring of EEG responses to TMS and noise-masking procedures were employed to ensure data quality. We found that the natural frequency of the premotor cortex was significantly reduced in early-course schizophrenia compared to HCs. No correlation was found between the natural frequency and age, clinical symptom severity, or dose of antipsychotic medications at the time of TMS-EEG. This finding extends to early-course schizophrenia previous evidence in chronic patients and supports the hypothesis of a deficit in frontal cortical synchronization as a core mechanism underlying this disorder. Future work should further explore the putative role of frontal natural frequencies as early pathophysiological biomarkers for schizophrenia.

3.
Int J Mol Sci ; 24(9)2023 Apr 22.
Article in English | MEDLINE | ID: mdl-37175389

ABSTRACT

N-acetylaspartate (NAA) and choline (Cho) are two brain metabolites implicated in several key neuronal functions. Abnormalities in these metabolites have been reported in both early course and chronic patients with schizophrenia (SCZ). It is, however, unclear whether NAA and Cho's alterations occur even before the onset of the disorder. Clinical high risk (CHR) individuals are a population uniquely enriched for psychosis and SCZ. In this exploratory study, we utilized 7-Tesla magnetic resonance spectroscopic imaging (MRSI) to examine differences in total NAA (tNAA; NAA + N-acetylaspartylglutamate [NAAG]) and major choline-containing compounds, including glycerophosphorylcholine and phosphorylcholine [tCho], over the creatine (Cre) levels between 26 CHR and 32 healthy control (HC) subjects in the subcortical and cortical regions. While no tCho/Cre differences were found between groups in any of the regions of interest (ROIs), we found that CHR had significantly reduced tNAA/Cre in the right dorsal lateral prefrontal cortex (DLPFC) compared to HC, and that the right DLPFC tNAA/Cre reduction in CHR was negatively associated with their positive symptoms scores. No tNAA/Cre differences were found between CHR and HC in other ROIs. In conclusion, reduced tNAA/Cre in CHR vs. HC may represent a putative molecular biomarker for risk of psychosis and SCZ that is associated with symptom severity.


Subject(s)
Hippocampus , Magnetic Resonance Imaging , Humans , Magnetic Resonance Spectroscopy , Hippocampus/metabolism , Creatine/metabolism , Aspartic Acid/metabolism , Choline/metabolism
4.
Brain Sci ; 12(2)2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35203996

ABSTRACT

Difficulty sleeping in a novel environment is a common phenomenon that is often described as the first night effect (FNE). Previous works have found FNE on sleep architecture and sleep power spectra parameters, especially during non-rapid eye movement (NREM) sleep. However, the impact of FNE on sleep parameters, including local differences in electroencephalographic (EEG) activity across nights, has not been systematically assessed. Here, we performed high-density EEG sleep recordings on 27 healthy individuals on two nights and examined differences in sleep architecture, NREM (stages 2 and 3) EEG power spectra, and NREM power topography across nights. We found higher wakefulness after sleep onset (WASO), reduced sleep efficiency, and less deep NREM sleep (stage 3), along with increased high-frequency NREM EEG power during the first night of sleep, corresponding to small to medium effect sizes (Cohen's d ≤ 0.5). Furthermore, study individuals showed significantly lower slow-wave activity in right frontal/prefrontal regions as well as higher sigma and beta activities in medial and left frontal/prefrontal areas, yielding medium to large effect sizes (Cohen's d ≥ 0.5). Altogether, these findings suggest the FNE is characterized by less efficient, more fragmented, shallower sleep that tends to affect especially certain brain regions. The magnitude and specificity of these effects should be considered when designing sleep studies aiming to compare across night effects.

SELECTION OF CITATIONS
SEARCH DETAIL
...