Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Proteomics ; 19(20): e1800491, 2019 10.
Article in English | MEDLINE | ID: mdl-31502396

ABSTRACT

In-depth proteome analysis of the haloarchaeal model organism Haloferax volcanii has been performed under standard, low/high salt, and low/high temperature conditions using label-free mass spectrometry. Qualitative analysis of protein identification data from high-pH/reversed-phase fractionated samples indicates 61.1% proteome coverage (2509 proteins), which is close to the maximum recorded values in archaea. Identified proteins match to the predicted proteome in their physicochemical properties, with only a small bias against low-molecular-weight and membrane-associated proteins. Cells grown under low and high salt stress as well as low and high temperature stress are quantitatively compared to standard cultures by sequential window acquisition of all theoretical mass spectra (SWATH-MS). A total of 2244 proteins, or 54.7% of the predicted proteome, are quantified across all conditions at high reproducibility, which allowed for global analysis of protein expression changes under these stresses. Of these, 2034 are significantly regulated under at least one stress condition. KEGG pathway enrichment analysis shows that several major cellular pathways are part of H. volcanii's universal stress response. In addition, specific pathways (purine, cobalamin, and tryptophan) are affected by temperature stress. The most strongly downregulated proteins under all stress conditions, zinc finger protein HVO_2753 and ribosomal protein S14, are found oppositely regulated to their immediate genetic neighbors from the same operon.


Subject(s)
Archaeal Proteins/metabolism , Haloferax volcanii/metabolism , Cold-Shock Response , Heat-Shock Response , Mass Spectrometry , Proteomics , Salt Stress
2.
RNA Biol ; 16(4): 469-480, 2019 04.
Article in English | MEDLINE | ID: mdl-29649958

ABSTRACT

Invading genetic elements pose a constant threat to prokaryotic survival, requiring an effective defence. Eleven years ago, the arsenal of known defence mechanisms was expanded by the discovery of the CRISPR-Cas system. Although CRISPR-Cas is present in the majority of archaea, research often focuses on bacterial models. Here, we provide a perspective based on insights gained studying CRISPR-Cas system I-B of the archaeon Haloferax volcanii. The system relies on more than 50 different crRNAs, whose stability and maintenance critically depend on the proteins Cas5 and Cas7, which bind the crRNA and form the Cascade complex. The interference machinery requires a seed sequence and can interact with multiple PAM sequences. H. volcanii stands out as the first example of an organism that can tolerate autoimmunity via the CRISPR-Cas system while maintaining a constitutively active system. In addition, the H. volcanii system was successfully developed into a tool for gene regulation.


Subject(s)
CRISPR-Cas Systems/genetics , Haloferax/genetics , Base Sequence , CRISPR-Associated Proteins/metabolism , RNA, Archaeal/genetics , Transcription, Genetic
3.
RNA Biol ; 16(4): 557-565, 2019 04.
Article in English | MEDLINE | ID: mdl-30146914

ABSTRACT

Carrier state viral infection constitutes an equilibrium state in which a limited fraction of a cellular population is infected while the remaining cells are transiently resistant to infection. This type of infection has been characterized for several bacteriophages but not, to date, for archaeal viruses. Here we demonstrate that the rudivirus SIRV3 can produce a host-dependent carrier state infection in the model crenarchaeon Sulfolobus. SIRV3 only infected a fraction of a Sulfolobus islandicus REY15A culture over several days during which host growth was unimpaired and no chromosomal DNA degradation was observed. CRISPR spacer acquisition from SIRV3 DNA was induced by coinfecting with the monocaudavirus SMV1 and it was coincident with increased transcript levels from subtype I-A adaptation and interference cas genes. However, this response did not significantly affect the carrier state infection of SIRV3 and both viruses were maintained in the culture over 12 days during which SIRV3 anti-CRISPR genes were shown to be expressed. Transcriptome and proteome analyses demonstrated that most SIRV3 genes were expressed at varying levels over time whereas SMV1 gene expression was generally low. The study yields insights into the basis for the stable infection of SIRV3 and the resistance to the different host CRISPR-Cas interference mechanisms. It also provides a rationale for the commonly observed coinfection of archaeal cells by different viruses in natural environments.


Subject(s)
CRISPR-Cas Systems/genetics , Immunity , Rudiviridae/genetics , Sulfolobus/genetics , Sulfolobus/immunology , Coinfection/virology , DNA, Viral/genetics , Genome, Viral , Heterozygote , Host-Pathogen Interactions/genetics , Proteome/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sulfolobus/growth & development , Viral Proteins/metabolism
4.
Nat Microbiol ; 3(3): 367-377, 2018 03.
Article in English | MEDLINE | ID: mdl-29403013

ABSTRACT

Specialized RNA endonucleases for the maturation of clustered regularly interspaced short palindromic repeat (CRISPR)-derived RNAs (crRNAs) are critical in CRISPR-CRISPR-associated protein (Cas) defence mechanisms. The Cas6 and Cas5d enzymes are the RNA endonucleases in many class 1 CRISPR-Cas systems. In some class 2 systems, maturation and effector functions are combined within a single enzyme or maturation proceeds through the combined actions of RNase III and trans-activating CRISPR RNAs (tracrRNAs). Three separate CRISPR-Cas systems exist in the cyanobacterium Synechocystis sp. PCC 6803. Whereas Cas6-type enzymes act in two of these systems, the third, which is classified as subtype III-B variant (III-Bv), lacks cas6 homologues. Instead, the maturation of crRNAs proceeds through the activity of endoribonuclease E, leaving unusual 13- and 14-nucleotide-long 5'-handles. Overexpression of RNase E leads to overaccumulation and knock-down to the reduced accumulation of crRNAs in vivo, suggesting that RNase E is the limiting factor for CRISPR complex formation. Recognition by RNase E depends on a stem-loop in the CRISPR repeat, whereas base substitutions at the cleavage site trigger the appearance of secondary products, consistent with a two-step recognition and cleavage mechanism. These results suggest the adaptation of an otherwise very conserved housekeeping enzyme to accommodate new substrates and illuminate the impressive plasticity of CRISPR-Cas systems that enables them to function in particular genomic environments.


Subject(s)
CRISPR-Cas Systems , Endoribonucleases/genetics , RNA/genetics , Clustered Regularly Interspaced Short Palindromic Repeats , Endoribonucleases/metabolism , RNA Cleavage , Substrate Specificity , Synechocystis/genetics
5.
Mol Microbiol ; 107(5): 595-609, 2018 03.
Article in English | MEDLINE | ID: mdl-29271512

ABSTRACT

Several noncoding RNAs potentially involved in nitrogen (N)-regulation have been detected in Methanosarcina mazei, however, targets have been identified only for one of them. Here, we report on the function of sRNA41 , highly expressed under N-sufficiency. Comprising 120 nucleotides, sRNA41 shows high sequence and structural conservation within draft genomes of numerous Methanosarcina species. In silico target prediction revealed several potential targets, including genes of two homologous operons encoding for acetyl-CoA-decarbonylase/synthase complexes (ACDS) representing highly probable target candidates. A highly conserved single stranded region of sRNA41 was predicted to mask six independent ribosome binding sites of these two polycistronic mRNAs and was verified in vitro by microscale thermophoresis. Proteome analysis of the respective sRNA41 -deletion mutant showed increased protein expression of both ACDS complexes in the absence of sRNA41 , whereas no effect on transcript levels was detected, arguing for sRNA41 -mediated post-transcriptional fine-tuning of ACDS expression. We hypothesize that the physiological advantage of downregulating sRNA41 under N-limiting conditions is the resulting increase of ACDS protein levels. This provides sufficient amounts of amino acids for nitrogenase synthesis as well as reducing equivalents and energy for N2 -fixation, thus linking the carbon and N-metabolism.


Subject(s)
Aldehyde Oxidoreductases/genetics , Gene Expression Regulation, Archaeal , Methanosarcina/genetics , Multienzyme Complexes/genetics , Nitrogen/metabolism , RNA, Messenger/metabolism , RNA, Small Untranslated/metabolism , Ribosomes/metabolism , Binding Sites , Carbon/metabolism , Computer Simulation , Genes , Genome, Archaeal , Nitrogenase/genetics , Nitrogenase/metabolism , Operon , Proteome , RNA, Messenger/chemistry , RNA, Messenger/genetics , RNA, Small Untranslated/chemistry , RNA, Small Untranslated/genetics
6.
Nucleic Acids Res ; 45(15): 8957-8967, 2017 Sep 06.
Article in English | MEDLINE | ID: mdl-28911098

ABSTRACT

Sm and Sm-like proteins represent an evolutionarily conserved family with key roles in RNA metabolism in Pro- and Eukaryotes. In this study, a collection of 53 mRNAs that co-purified with Sulfolobus solfataricus (Sso) SmAP2 were surveyed for a specific RNA binding motif (RBM). SmAP2 was shown to bind with high affinity to the deduced consensus RNA binding motif (SmAP2-cRBM) in vitro. Residues in SmAP2 interacting with the SmAP2-cRBM were mapped by UV-induced crosslinking in combination with mass-spectrometry, and verified by mutational analyses. The RNA-binding site on SmAP2 includes a modified uracil binding pocket containing a unique threonine (T40) located on the L3 face and a second residue, K25, located in the pore. To study the function of the SmAP2-RBM in vivo, three authentic RBMs were inserted in the 3'UTR of a lacS reporter gene. The presence of the SmAP2-RBM in the reporter-constructs resulted in decreased LacS activity and reduced steady state levels of lacS mRNA. Moreover, the presence of the SmAP2-cRBM in and the replacement of the lacS 3'UTR with that of Sso2194 encompassing a SmAP2-RBM apparently impacted on the stability of the chimeric transcripts. These results are discussed in light of the function(s) of eukaryotic Lsm proteins in RNA turnover.


Subject(s)
3' Untranslated Regions , Archaeal Proteins/chemistry , RNA, Archaeal/genetics , RNA-Binding Motifs , RNA-Binding Proteins/chemistry , Sulfolobus solfataricus/genetics , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , Base Sequence , Binding Sites , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genes, Reporter , Kinetics , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Models, Molecular , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , RNA Stability , RNA, Archaeal/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Substrate Specificity , Sulfolobus solfataricus/metabolism
7.
Mol Cell ; 64(2): 307-319, 2016 10 20.
Article in English | MEDLINE | ID: mdl-27720643

ABSTRACT

SF3b is a heptameric protein complex of the U2 small nuclear ribonucleoprotein (snRNP) that is essential for pre-mRNA splicing. Mutations in the largest SF3b subunit, SF3B1/SF3b155, are linked to cancer and lead to alternative branch site (BS) selection. Here we report the crystal structure of a human SF3b core complex, revealing how the distinctive conformation of SF3b155's HEAT domain is maintained by multiple contacts with SF3b130, SF3b10, and SF3b14b. Protein-protein crosslinking enabled the localization of the BS-binding proteins p14 and U2AF65 within SF3b155's HEAT-repeat superhelix, which together with SF3b14b forms a composite RNA-binding platform. SF3b155 residues, the mutation of which leads to cancer, contribute to the tertiary structure of the HEAT superhelix and its surface properties in the proximity of p14 and U2AF65. The molecular architecture of SF3b reveals the spatial organization of cancer-related SF3b155 mutations and advances our understanding of their effects on SF3b structure and function.


Subject(s)
Mutation , Neoplasm Proteins/chemistry , Oncogene Proteins/chemistry , Phosphoproteins/chemistry , RNA Splicing Factors/chemistry , Spliceosomes/chemistry , Splicing Factor U2AF/chemistry , Amino Acid Sequence , Animals , Baculoviridae/genetics , Baculoviridae/metabolism , Binding Sites , Cloning, Molecular , Crystallography, X-Ray , Gene Expression , Genes, Tumor Suppressor , HeLa Cells , Humans , Models, Molecular , Moths , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Oncogene Proteins/genetics , Oncogene Proteins/metabolism , Phosphoproteins/genetics , Phosphoproteins/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protein Structure, Tertiary , Protein Subunits/chemistry , Protein Subunits/genetics , Protein Subunits/metabolism , RNA Splicing , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Spliceosomes/metabolism , Spliceosomes/ultrastructure , Splicing Factor U2AF/genetics , Splicing Factor U2AF/metabolism
8.
Nucleic Acids Res ; 44(12): 5872-82, 2016 07 08.
Article in English | MEDLINE | ID: mdl-27216815

ABSTRACT

Shewanella putrefaciens CN-32 contains a single Type I-Fv CRISPR-Cas system which confers adaptive immunity against bacteriophage infection. Three Cas proteins (Cas6f, Cas7fv, Cas5fv) and mature CRISPR RNAs were shown to be required for the assembly of an interference complex termed Cascade. The Cas protein-CRISPR RNA interaction sites within this complex were identified via mass spectrometry. Additional Cas proteins, commonly described as large and small subunits, that are present in all other investigated Cascade structures, were not detected. We introduced this minimal Type I system in Escherichia coli and show that it provides heterologous protection against lambda phage. The absence of a large subunit suggests that the length of the crRNA might not be fixed and recombinant Cascade complexes with drastically shortened and elongated crRNAs were engineered. Size-exclusion chromatography and small-angle X-ray scattering analyses revealed that the number of Cas7fv backbone subunits is adjusted in these shortened and extended Cascade variants. Larger Cascade complexes can still confer immunity against lambda phage infection in E. coli Minimized Type I CRISPR-Cas systems expand our understanding of the evolution of Cascade assembly and diversity. Their adjustable crRNA length opens the possibility for customizing target DNA specificity.


Subject(s)
Bacterial Proteins/chemistry , CRISPR-Associated Proteins/chemistry , CRISPR-Cas Systems , Clustered Regularly Interspaced Short Palindromic Repeats , Escherichia coli/genetics , Shewanella putrefaciens/genetics , Amino Acid Sequence , Bacterial Proteins/genetics , Bacterial Proteins/immunology , Bacteriophage lambda/physiology , CRISPR-Associated Proteins/genetics , CRISPR-Associated Proteins/immunology , Escherichia coli/immunology , Escherichia coli/metabolism , Escherichia coli/virology , Gene Expression , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/immunology , Protein Subunits/chemistry , Protein Subunits/genetics , Protein Subunits/immunology , RNA, Bacterial/chemistry , RNA, Bacterial/genetics , RNA, Bacterial/immunology , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Sequence Alignment , Shewanella putrefaciens/immunology , Shewanella putrefaciens/metabolism , Shewanella putrefaciens/virology , Transformation, Bacterial
9.
Structure ; 24(4): 547-554, 2016 Apr 05.
Article in English | MEDLINE | ID: mdl-26996962

ABSTRACT

A subclass of recently discovered CRISPR repeat RNA in bacteria contains minimally recognizable structural features that facilitate an unknown mechanism of recognition and processing by the Cas6 family of endoribonucleases. Cocrystal structures of Cas6 from Methanococcus maripaludis (MmCas6b) bound with its repeat RNA revealed a dual site binding structure and a cleavage site conformation poised for phosphodiester bond breakage. Two non-interacting MmCas6b bind to two separate AAYAA motifs within the same repeat, one distal and one adjacent to the cleavage site. This bound structure potentially competes with a stable but non-productive RNA structure. At the cleavage site, MmCas6b supplies a base pair mimic to stabilize a short 2 base pair stem immediately upstream of the scissile phosphate. Complementary biochemical analyses support the dual-AAYAA binding model and a critical role of the protein-RNA base pair mimic. Our results reveal a previously unknown method of processing non-stem-loop CRISPR RNA by Cas6.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats , Endoribonucleases/chemistry , Endoribonucleases/metabolism , Methanococcus/genetics , RNA, Archaeal/metabolism , Archaeal Proteins/chemistry , Archaeal Proteins/metabolism , Binding Sites , Catalytic Domain , Crystallography, X-Ray , Methanococcus/chemistry , Models, Molecular , Nucleic Acid Conformation , Protein Binding , Protein Conformation , RNA, Archaeal/chemistry
10.
Biosci Rep ; 35(3)2015 May 05.
Article in English | MEDLINE | ID: mdl-26182359

ABSTRACT

CRISPR (clustered regularly interspaced short palindromic repeat) systems provide bacteria and archaea with adaptive immunity to repel invasive genetic elements. Type I systems use 'cascade' [CRISPR-associated (Cas) complex for antiviral defence] ribonucleoprotein complexes to target invader DNA, by base pairing CRISPR RNA (crRNA) to protospacers. Cascade identifies PAMs (protospacer adjacent motifs) on invader DNA, triggering R-loop formation and subsequent DNA degradation by Cas3. Cas8 is a candidate PAM recognition factor in some cascades. We analysed Cas8 homologues from type IB CRISPR systems in archaea Haloferax volcanii (Hvo) and Methanothermobacter thermautotrophicus (Mth). Cas8 was essential for CRISPR interference in Hvo and purified Mth Cas8 protein responded to PAM sequence when binding to nucleic acids. Cas8 interacted physically with Cas5-Cas7-crRNA complex, stimulating binding to PAM containing substrates. Mutation of conserved Cas8 amino acid residues abolished interference in vivo and altered catalytic activity of Cas8 protein in vitro. This is experimental evidence that Cas8 is important for targeting Cascade to invader DNA.


Subject(s)
Archaeal Proteins/genetics , Clustered Regularly Interspaced Short Palindromic Repeats , Haloferax volcanii/genetics , Methanobacteriaceae/genetics , RNA Interference , Archaeal Proteins/metabolism , DNA, Archaeal/chemistry , DNA, Archaeal/metabolism , Mutation , Protein Interaction Maps
11.
Methods ; 89: 138-48, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-26071038

ABSTRACT

Ribonucleoprotein (RNP) complexes play important roles in the cell by mediating basic cellular processes, including gene expression and its regulation. Understanding the molecular details of these processes requires the identification and characterization of protein-RNA interactions. Over the years various approaches have been used to investigate these interactions, including computational analyses to look for RNA binding domains, gel-shift mobility assays on recombinant and mutant proteins as well as co-crystallization and NMR studies for structure elucidation. Here we report a more specialized and direct approach using UV-induced cross-linking coupled with mass spectrometry. This approach permits the identification of cross-linked peptides and RNA moieties and can also pin-point exact RNA contact sites within the protein. The power of this method is illustrated by the application to different single- and multi-subunit RNP complexes belonging to the prokaryotic adaptive immune system, CRISPR-Cas (CRISPR: clustered regularly interspaced short palindromic repeats; Cas: CRISPR associated). In particular, we identified the RNA-binding sites within three Cas7 protein homologs and mapped the cross-linking results to reveal structurally conserved Cas7 - RNA binding interfaces. These results demonstrate the strong potential of UV-induced cross-linking coupled with mass spectrometry analysis to identify RNA interaction sites on the RNA binding proteins.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats/physiology , RNA-Binding Proteins/analysis , RNA-Binding Proteins/metabolism , Spectrometry, Mass, Electrospray Ionization/methods , Tandem Mass Spectrometry/methods , Ultraviolet Rays , Photic Stimulation/methods , Protein Binding , Protein Structure, Secondary , Protein Structure, Tertiary , RNA/analysis , RNA/chemistry , RNA/metabolism , RNA-Binding Proteins/chemistry
12.
Mol Cell ; 56(4): 518-30, 2014 Nov 20.
Article in English | MEDLINE | ID: mdl-25457165

ABSTRACT

CRISPR-Cas is a prokaryotic adaptive immune system that provides sequence-specific defense against foreign nucleic acids. Here we report the structure and function of the effector complex of the Type III-A CRISPR-Cas system of Thermus thermophilus: the Csm complex (TtCsm). TtCsm is composed of five different protein subunits (Csm1-Csm5) with an uneven stoichiometry and a single crRNA of variable size (35-53 nt). The TtCsm crRNA content is similar to the Type III-B Cmr complex, indicating that crRNAs are shared among different subtypes. A negative stain EM structure of the TtCsm complex exhibits the characteristic architecture of Type I and Type III CRISPR-associated ribonucleoprotein complexes. crRNA-protein crosslinking studies show extensive contacts between the Csm3 backbone and the bound crRNA. We show that, like TtCmr, TtCsm cleaves complementary target RNAs at multiple sites. Unlike Type I complexes, interference by TtCsm does not proceed via initial base pairing by a seed sequence.


Subject(s)
Bacterial Proteins/metabolism , CRISPR-Associated Proteins/metabolism , Clustered Regularly Interspaced Short Palindromic Repeats , RNA Cleavage , Thermus thermophilus/genetics , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/ultrastructure , Base Sequence , CRISPR-Associated Proteins/chemistry , CRISPR-Associated Proteins/ultrastructure , Endoribonucleases/chemistry , Endoribonucleases/metabolism , Endoribonucleases/ultrastructure , Microscopy, Electron , Models, Molecular , Molecular Sequence Data , Protein Binding , Protein Structure, Quaternary , RNA, Bacterial/genetics , RNA, Bacterial/metabolism , Thermus thermophilus/enzymology
13.
RNA Biol ; 11(8): 1072-82, 2014.
Article in English | MEDLINE | ID: mdl-25483036

ABSTRACT

Upon pathogen invasion, bacteria and archaea activate an RNA-interference-like mechanism termed CRISPR (clustered regularly interspaced short palindromic repeats). A large family of Cas (CRISPR-associated) proteins mediates the different stages of this sophisticated immune response. Bioinformatic studies have classified the Cas proteins into families, according to their sequences and respective functions. These range from the insertion of the foreign genetic elements into the host genome to the activation of the interference machinery as well as target degradation upon attack. Cas7 family proteins are central to the type I and type III interference machineries as they constitute the backbone of the large interference complexes. Here we report the crystal structure of Thermofilum pendens Csc2, a Cas7 family protein of type I-D. We found that Csc2 forms a core RRM-like domain, flanked by three peripheral insertion domains: a lid domain, a Zinc-binding domain and a helical domain. Comparison with other Cas7 family proteins reveals a set of similar structural features both in the core and in the peripheral domains, despite the absence of significant sequence similarity. T. pendens Csc2 binds single-stranded RNA in vitro in a sequence-independent manner. Using a crosslinking - mass-spectrometry approach, we mapped the RNA-binding surface to a positively charged surface patch on T. pendens Csc2. Thus our analysis of the key structural and functional features of T. pendens Csc2 highlights recurring themes and evolutionary relationships in type I and type III Cas proteins.


Subject(s)
Archaeal Proteins/chemistry , CRISPR-Associated Proteins/chemistry , RNA-Binding Proteins/chemistry , Thermofilaceae/chemistry , Archaea , Archaeal Proteins/genetics , Binding Sites , CRISPR-Associated Proteins/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Crystallography, X-Ray , Host-Pathogen Interactions/genetics , Protein Conformation , RNA, Archaeal/chemistry , RNA, Archaeal/genetics , RNA-Binding Proteins/genetics
14.
Nucleic Acids Res ; 42(8): 5125-38, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24500198

ABSTRACT

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR-associated (Cas) systems of type I use a Cas ribonucleoprotein complex for antiviral defense (Cascade) to mediate the targeting and degradation of foreign DNA. To address molecular features of the archaeal type I-A Cascade interference mechanism, we established the in vitro assembly of the Thermoproteus tenax Cascade from six recombinant Cas proteins, synthetic CRISPR RNAs (crRNAs) and target DNA fragments. RNA-Seq analyses revealed the processing pattern of crRNAs from seven T. tenax CRISPR arrays. Synthetic crRNA transcripts were matured by hammerhead ribozyme cleavage. The assembly of type I-A Cascade indicates that Cas3' and Cas3'' are an integral part of the complex, and the interference activity was shown to be dependent on the crRNA and the matching target DNA. The reconstituted Cascade was used to identify sequence motifs that are required for efficient DNA degradation and to investigate the role of the subunits Cas7 and Cas3'' in the interplay with other Cascade subunits.


Subject(s)
Archaeal Proteins/metabolism , CRISPR-Associated Proteins/metabolism , CRISPR-Cas Systems , Deoxyribonucleases/metabolism , DNA Cleavage , DNA, Archaeal/metabolism , DNA, Single-Stranded/metabolism , Exodeoxyribonucleases/metabolism , RNA Processing, Post-Transcriptional , RNA, Archaeal/chemistry , RNA, Archaeal/metabolism , Thermoproteus/enzymology , Thermoproteus/genetics
15.
J Biol Chem ; 289(10): 7164-7177, 2014 Mar 07.
Article in English | MEDLINE | ID: mdl-24459147

ABSTRACT

The clustered regularly interspaced short palindromic repeats/CRISPR-associated (CRISPR-Cas) system is a prokaryotic defense mechanism against foreign genetic elements. A plethora of CRISPR-Cas versions exist, with more than 40 different Cas protein families and several different molecular approaches to fight the invading DNA. One of the key players in the system is the CRISPR-derived RNA (crRNA), which directs the invader-degrading Cas protein complex to the invader. The CRISPR-Cas types I and III use the Cas6 protein to generate mature crRNAs. Here, we show that the Cas6 protein is necessary for crRNA production but that additional Cas proteins that form a CRISPR-associated complex for antiviral defense (Cascade)-like complex are needed for crRNA stability in the CRISPR-Cas type I-B system in Haloferax volcanii in vivo. Deletion of the cas6 gene results in the loss of mature crRNAs and interference. However, cells that have the complete cas gene cluster (cas1-8b) removed and are transformed with the cas6 gene are not able to produce and stably maintain mature crRNAs. crRNA production and stability is rescued only if cas5, -6, and -7 are present. Mutational analysis of the cas6 gene reveals three amino acids (His-41, Gly-256, and Gly-258) that are essential for pre-crRNA cleavage, whereas the mutation of two amino acids (Ser-115 and Ser-224) leads to an increase of crRNA amounts. This is the first systematic in vivo analysis of Cas6 protein variants. In addition, we show that the H. volcanii I-B system contains a Cascade-like complex with a Cas7, Cas5, and Cas6 core that protects the crRNA.


Subject(s)
Archaeal Proteins/metabolism , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Haloferax volcanii/genetics , Haloferax volcanii/metabolism , RNA Stability , RNA, Archaeal/chemistry , Amino Acid Sequence , Archaeal Proteins/genetics , Molecular Sequence Data
16.
Nat Struct Mol Biol ; 20(11): 1281-8, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24121231

ABSTRACT

The Ccr4-Not complex is involved in several aspects of gene expression, including mRNA decay, translational repression and transcription. We determined the 2.8-Å-resolution crystal structure of a 120-kDa core complex of the Saccharomyces cerevisiae Not module comprising the C-terminal arm of Not1, Not2 and Not5. Not1 is a HEAT-repeat scaffold. Not2 and Not5 have extended regions that wrap around Not1 and around their globular domains, the Not boxes. The Not boxes resemble Sm folds and interact with each other with a noncanonical dimerization surface. Disruption of the interactions within the ternary complex has severe effects on growth in vivo. The ternary complex forms a composite surface that binds poly(U) RNA in vitro, with a site at the Not5 Not box. The results suggest that the Not module forms a versatile platform for macromolecular interactions.


Subject(s)
Cell Cycle Proteins/chemistry , Cell Cycle Proteins/metabolism , RNA/metabolism , Repressor Proteins/chemistry , Repressor Proteins/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Transcription Factors/chemistry , Transcription Factors/metabolism , Amino Acid Sequence , Crystallography, X-Ray , Models, Molecular , Molecular Sequence Data , Protein Binding , Protein Conformation , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/enzymology
17.
Nucleic Acids Res ; 41(17): 8377-90, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23851565

ABSTRACT

Translational repression and deadenylation of eukaryotic mRNAs result either in the sequestration of the transcripts in a nontranslatable pool or in their degradation. Removal of the 5' cap structure is a crucial step that commits deadenylated mRNAs to 5'-to-3' degradation. Pat1, Edc3 and the DEAD-box protein Dhh1 are evolutionary conserved factors known to participate in both translational repression and decapping, but their interplay is currently unclear. We report the 2.8 Å resolution structure of yeast Dhh1 bound to the N-terminal domain of Pat1. The structure shows how Pat1 wraps around the C-terminal RecA domain of Dhh1, docking onto the Phe-Asp-Phe (FDF) binding site. The FDF-binding site of Dhh1 also recognizes Edc3, revealing why the binding of Pat1 and Edc3 on Dhh1 are mutually exclusive events. Using co-immunoprecipitation assays and structure-based mutants, we demonstrate that the mode of Dhh1-Pat1 recognition is conserved in humans. Pat1 and Edc3 also interfere and compete with the RNA-binding properties of Dhh1. Mapping the RNA-binding sites on Dhh1 with a crosslinking-mass spectrometry approach shows a large RNA-binding surface around the C-terminal RecA domain, including the FDF-binding pocket. The results suggest a model for how Dhh1-containing messenger ribonucleoprotein particles might be remodeled upon Pat1 and Edc3 binding.


Subject(s)
DEAD-box RNA Helicases/chemistry , RNA-Binding Proteins/chemistry , RNA/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Amino Acid Sequence , Binding Sites , DEAD-box RNA Helicases/metabolism , HEK293 Cells , Humans , Models, Molecular , Molecular Sequence Data , Protein Binding , Protein Interaction Domains and Motifs , RNA-Binding Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL
...