Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Food Sci Technol ; 61(2): 300-310, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38196719

ABSTRACT

Black jamun is a rich source of polyphenol and anthocyanin that provides major potential as a natural pigment. The different concentrations of encapsulated jamun pulp phytocompounds (0, 0.5, 1, 3 and 5 g 100 g-1) were incorporated with chewing gum for the development of functional food production. The study showed among variants, 5 g 100 g-1 encapsulates of black jamun pulp extract-based chewing gum (BJE-CG) showed better color stability and texture properties caused by the availability of alginate and guar gum in the encapsulates. The results revealed the dissolution behaviour of 5 g 100 g-1 based BJE-CG has a greater (P < 0.05) dissolution of total anthocyanin (TAC) and phenolic content (TPC). The dissolution kinetics model including the Korsmeyer-Peppas model, Higuchi model and Gunes model were statistically tested the dissolution rate of TAC and TPC. The Korsmeyer-Peppas model for TAC and Gunes model for TPC were found the best suitable through R2 (0.995 and 0.991) and the lowest χ2 (0.0098 and 0.0361). The dissolution kinetics study indicated the 5 g 100 g-1 based BJE-CG has the most suitable fitting in dissolution kinetics via simulated salivary fluid at 10 min. The application of the encapsulated phytocompounds shows a better solution for food and pharma industries to deliver decent plant-based pigment and phytocompounds in the food product.

2.
Int J Biol Macromol ; 194: 715-725, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34822825

ABSTRACT

The phytochemical-rich extract obtained from black jamun pulp were encapsulated using vibrating dripping extrusion technique. The utilisation of alginate (AL) with four variations of core-shell material comprising gum Arabic (AL-GA), guar gum (AL-GG), pectin (AL-P) and xanthan gum (AL-X) was engaged to form calcium-alginate based lyophilised jamun extract encapsulated beads. It resulted that among four variations, lyophilised alginate with AL-GG based encapsulated jamun extract filled beads have better physicochemical characteristics and 95% encapsulation efficiency. The results revealed the morphological comparison of each variation. The release behaviour of AL-GG based beads has a higher release of total phenolics (TPC) and total anthocyanin content (TAC). The release kinetics model involving Ritger-Peppas and Higuchi model were applied for release TPC and TAC of all variations of beads. The Ritger-Peppas model was found best suitable in terms of average R2 (0.965) and lowest χ2 (0.0039). The release kinetics study showed that AL-GA based beads followed by AL-GG could also be the best suitable in release behaviour using simulated gastrointestinal fluids at 140-160 min. Overall, results shown the encapsulated Jamun beads have the best agro-industrial efficacy in form of phytochemical compounds based microparticles, holding decent antioxidant potential.


Subject(s)
Alginates/chemistry , Antioxidants , Hydrogels/chemistry , Phytochemicals , Plant Gums , Antioxidants/chemistry , Antioxidants/isolation & purification , Phytochemicals/chemistry , Phytochemicals/isolation & purification , Plant Gums/chemistry , Plant Gums/isolation & purification
3.
Plants (Basel) ; 9(10)2020 Oct 09.
Article in English | MEDLINE | ID: mdl-33050190

ABSTRACT

Artocarpus heterophyllus Lam. (AH) and Artocarpus lakoocha Roxb. (AL) are two endemic plants that grow on the Asian continent. To date, their applications have been aimed at using their fruit as a food source or for some of their therapeutic virtues. In this study, attention was given to the flowers of AH and AL. Initially, the cytotoxicity of the phytoextracts was assessed, and the content of minerals, phenols, and flavonoids was determined. Furthermore, some antioxidant components were identified by HPLC. Furthermore, the ability of AH and AL extracts to modulate the gene expression of some targets involved in the antioxidant response was studied. The results obtained highlighted the nutritional and antioxidant value of the AH and AL flower extracts. This study will contribute to enhancing the use of AH and AL flowers as potential supplements in human nutrition.

4.
Ultrason Sonochem ; 58: 104693, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31450370

ABSTRACT

The study investigates the effects of novel combination of ultrasound and vacuum pre-treatment on osmotic dehydration of black jamun fruit. The osmotic dehydration was conducted under three different conditions namely atmospheric osmotic dehydration (AOD), vacuum pre-treated osmotic dehydration (VOD), ultrasonic vacuum pre-treated osmotic dehydration (USVOD). The changes in water and solute content during osmotic dehydration were fitted to Peleg model to predict the equilibrium moisture and solute content values. The adequacy of Weibull distribution model for predicting the moisture and solute contents during osmotic dehydration at different temperatures were assessed. The effective diffusivity of samples in AOD, VOD and USVOD were estimated by application of Fick's second law. The high regression coefficient (R2 > 0.9) and low χ2 value represented the suitability of Peleg model for predicting equilibrium moisture and solute content and Weibull model for predicting both moisture and solute fraction in jamum fruit during AOD, VOD and USVOD processes. Both vacuum and ultrasound vacuum pretreatment enhanced the moisture loss and solute uptake during osmotic dehydration. The results showed the osmotic drying rate was significantly influenced by different pre-treatment techniques and both vacuum and ultrasonic vacuum pretreatment process enhanced moisture loss and solute uptake during osmotic dehydration. The effective moisture and solute diffusivity were highest in ultrasonic vacuum pretreated samples and the values at 30-50 °C temperature were ranged from 8.53 × 10-10 to 9.27 × 10-10 m2/s and 3.81 × 10-10 to 4.39 × 10-10 m2/s respectively. The results were interrelated to changes in tissue structure caused by application of vacuum and ultrasonic vacuum pretreatment.

SELECTION OF CITATIONS
SEARCH DETAIL
...