Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(22): 29121-29131, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38776248

ABSTRACT

In this study, we introduce a synergistic approach to enhance the surface-enhanced Raman scattering (SERS) signal in two-dimensional (2D) MXene through photo-irradiation and electric field modulation. Our methodology involves the integration of 2D Ti3C2Tx MXene with piezoelectric polyvinylidene fluoride (PVDF) polymer, resulting in the creation of a free-standing, flexible composite film. On this composite film, a thin layer of Au was deposited. Our flexible substrate was able to sense methylene blue (MB), crystal violet (CV), 4-aminothiophenol (ATP), and melamine. The SERS substrate exhibits low detection limit of 10-8 M MB with a 6.7 × 106 enhancement factor (EF). The SERS substrate enables picomolar (pM) detection sensitivity for CV molecules with an EF of 9.2 × 109. Furthermore, the introduction of photo-irradiation leads to an additional ∼3.5-fold enhancement in the SERS signal, which is attributed to the altered work function and defects. The application of mechanical force to the piezoelectric PVDF/Ti3C2Tx film results in a ∼4.5-fold boost in SERS signal due to mechanical force-induced electrical energy. The fabrication strategy employed here for producing a flexible piezoelectric PVDF/Ti3C2Tx film holds significant promise for expanding the potential application of 2D MXene in rapid, on-site sensing scenarios.

SELECTION OF CITATIONS
SEARCH DETAIL
...