Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Cell ; 40(12): 1470-1487.e7, 2022 12 12.
Article in English | MEDLINE | ID: mdl-36513049

ABSTRACT

Despite the success of CAR-T cell cancer immunotherapy, challenges in efficacy and safety remain. Investigators have begun to enhance CAR-T cells with the expression of accessory molecules to address these challenges. Current systems rely on constitutive transgene expression or multiple viral vectors, resulting in unregulated response and product heterogeneity. Here, we develop a genetic platform that combines autonomous antigen-induced production of an accessory molecule with constitutive CAR expression in a single lentiviral vector called Uni-Vect. The broad therapeutic application of Uni-Vect is demonstrated in vivo by activation-dependent expression of (1) an immunostimulatory cytokine that improves efficacy, (2) an antibody that ameliorates cytokine-release syndrome, and (3) transcription factors that modulate T cell biology. Uni-Vect is also implemented as a platform to characterize immune receptors. Overall, we demonstrate that Uni-Vect provides a foundation for a more clinically actionable next-generation cellular immunotherapy.


Subject(s)
Immunotherapy, Adoptive , Receptors, Antigen, T-Cell , Humans , Immunotherapy, Adoptive/methods , T-Lymphocytes , Genetic Vectors/genetics , Cytokines/metabolism
2.
Int J Mol Sci ; 22(11)2021 May 25.
Article in English | MEDLINE | ID: mdl-34070369

ABSTRACT

Folate receptor beta (FRß) is a folate binding receptor expressed on myeloid lineage hematopoietic cells. FRß is commonly expressed at high levels on malignant blasts in patients with acute myeloid leukemia (AML), as well as on M2 polarized tumor-associated macrophages (TAMs) in the tumor microenvironment of many solid tumors. Therefore, FRß is a potential target for both direct and indirect cancer therapy. We demonstrate that FRß is expressed in both AML cell lines and patient-derived AML samples and that a high-affinity monoclonal antibody against FRß (m909) has the ability to cause dose- and expression-dependent ADCC against these cells in vitro. Importantly, we find that administration of m909 has a significant impact on tumor growth in a humanized mouse model of AML. Surprisingly, m909 functions in vivo with and without the infusion of human NK cells as mediators of ADCC, suggesting potential involvement of mouse macrophages as effector cells. We also found that TAMs from primary ovarian ascites samples expressed appreciable levels of FRß and that m909 has the ability to cause ADCC in these samples. These results indicate that the targeting of FRß using m909 has the potential to limit the outgrowth of AML in vitro and in vivo. Additionally, m909 causes cytotoxicity to TAMs in the tumor microenvironment of ovarian cancer warranting further investigation of m909 and its derivatives as therapeutic agents in patients with FRß-expressing cancers.


Subject(s)
Antineoplastic Agents, Immunological/pharmacology , Folate Receptor 2 , Immunotherapy , Leukemia, Myeloid, Acute , Neoplasm Proteins , Ovarian Neoplasms , Animals , CHO Cells , Cricetulus , Female , Folate Receptor 2/antagonists & inhibitors , Folate Receptor 2/immunology , HL-60 Cells , Humans , Leukemia, Myeloid, Acute/immunology , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/therapy , Mice , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/immunology , Ovarian Neoplasms/immunology , Ovarian Neoplasms/pathology , Ovarian Neoplasms/therapy , THP-1 Cells , Xenograft Model Antitumor Assays
3.
Vaccines (Basel) ; 8(4)2020 Oct 31.
Article in English | MEDLINE | ID: mdl-33142718

ABSTRACT

Peripheral T cell lymphomas (PTCLs) are generally chemotherapy resistant and have a poor prognosis. The lack of targeted immunotherapeutic approaches for T cell malignancies results in part from potential risks associated with targeting broadly expressed T cell markers, namely T cell depletion and clinically significant immune compromise. The knowledge that the T cell receptor (TCR) ß chain in human α/ß TCRs are grouped into Vß families that can each be targeted by a monoclonal antibody can therefore be exploited for therapeutic purposes. Here, we develop a flexible approach for targeting TCR Vß families by engineering T cells to express a chimeric CD64 protein that acts as a high affinity immune receptor (IR). We found that CD64 IR-modified T cells can be redirected with precision to T cell targets expressing selected Vß families by combining CD64 IR-modified T cells with a monoclonal antibody directed toward a specific TCR Vß family in vitro and in vivo. These findings provide proof of concept that TCR Vß-family-specific T cell lysis can be achieved using this novel combination cell-antibody platform and illuminates a path toward high precision targeting of T cell malignancies without substantial immune compromise.

4.
J Am Chem Soc ; 142(14): 6554-6568, 2020 04 08.
Article in English | MEDLINE | ID: mdl-32191035

ABSTRACT

Universal immune receptors represent a rapidly emerging form of adoptive T-cell therapy with the potential to overcome safety and antigen escape challenges faced by conventional chimeric antigen receptor (CAR) T-cell therapy. By decoupling antigen recognition and T-cell signaling domains via bifunctional antigen-specific targeting ligands, universal immune receptors can regulate T-cell effector function and target multiple antigens with a single receptor. Here, we describe the development of the SpyCatcher immune receptor, the first universal immune receptor that allows for the post-translational covalent attachment of targeting ligands at the T-cell surface through the application of SpyCatcher-SpyTag chemistry. The SpyCatcher immune receptor redirected primary human T cells against a variety of tumor antigens via the addition of SpyTag-labeled targeting ligands, both in vitro and in vivo. SpyCatcher T-cell activity relied upon the presence of both target antigen and SpyTag-labeled targeting ligand, allowing for dose-dependent control of function. The mutational disruption of covalent bond formation between the receptor and the targeting ligand still permitted redirected T-cell function but significantly compromised antitumor function. Thus, the SpyCatcher immune receptor allows for rapid antigen-specific receptor assembly, multiantigen targeting, and controllable T-cell activity.


Subject(s)
Genetic Engineering/methods , T-Lymphocytes/immunology , Humans , Ligands
5.
Mol Ther ; 28(2): 548-560, 2020 02 05.
Article in English | MEDLINE | ID: mdl-31870622

ABSTRACT

The prognosis of patients diagnosed with advanced ovarian or endometrial cancer remains poor, and effective therapeutic strategies are limited. The Müllerian inhibiting substance type 2 receptor (MISIIR) is a transforming growth factor ß (TGF-ß) receptor family member, overexpressed by most ovarian and endometrial cancers while absent in most normal tissues. Restricted tissue expression, coupled with an understanding that MISIIR ligation transmits apoptotic signals to cancer cells, makes MISIIR an attractive target for tumor-directed therapeutics. However, the development of clinical MISIIR-targeted agents has been challenging. Prompted by the responses achieved in patients with blood malignancies using chimeric antigen receptor (CAR) T cell therapy, we hypothesized that MISIIR targeting may be achieved using a CAR T cell approach. Herein, we describe the development and evaluation of a CAR that targets MISIIR. T cells expressing the MISIIR-specific CAR demonstrated antigen-specific reactivity in vitro and eliminated MISIIR-overexpressing tumors in vivo. MISIIR CAR T cells also recognized a panel of human ovarian and endometrial cancer cell lines, and they lysed a battery of patient-derived tumor specimens in vitro, without mediating cytotoxicity of a panel of normal primary human cells. In conclusion, these results indicate that MISIIR targeting for the treatment of ovarian cancer and other gynecologic malignancies is achievable using CAR technology.


Subject(s)
Genital Neoplasms, Female/immunology , Immunotherapy, Adoptive , Ovarian Neoplasms/immunology , Receptors, Chimeric Antigen/immunology , Receptors, Peptide/immunology , Receptors, Transforming Growth Factor beta/immunology , T-Lymphocytes/immunology , Animals , Cell Line, Tumor , Disease Models, Animal , Epitopes/genetics , Epitopes/immunology , Female , Genital Neoplasms, Female/therapy , Humans , Mice , Ovarian Neoplasms/therapy , Receptors, Chimeric Antigen/metabolism , Single-Chain Antibodies/genetics , Single-Chain Antibodies/immunology , T-Lymphocytes/metabolism , Xenograft Model Antitumor Assays
6.
Oncotarget ; 7(50): 82354-82368, 2016 Dec 13.
Article in English | MEDLINE | ID: mdl-27409425

ABSTRACT

Exogenous cytokines are widely applied to enhance the anti-tumor ability of immune cells. However, systematic comparative studies of their effects on chimeric antigen receptor (CAR)-engineered T (CART) cells are lacking. In this study, CART cells targeting folate receptor-alpha were generated and expanded ex vivo in the presence of different cytokines (IL-2, IL-7, IL-15, IL-18, and IL-21), and their expansion, phenotype and cytotoxic capacity were evaluated, in vitro and in vivo. Moreover, the effect of the administration of these cytokines along with CART cells in vivo was also studied. IL-2, IL-7, and IL-15 favored the ex vivo expansion of CART cells compared to other cytokines or no cytokine treatment. IL-7 induced the highest proportion of memory stem cell-like CART cells in the final product, and IL-21 supported the expansion of CART cells with a younger phenotype, while IL-2 induced more differentiated CART cells. IL-2 and IL-15-exposed CART cells secreted more proinflammatory cytokines and presented stronger tumor-lysis ability in vitro. However, when tested in vivo, CART cells exposed to IL-2 ex vivo showed the least anti-tumor effect. In contrast, the administration of IL-15 and IL-21 in combination with CART cells in vivo increased their tumor killing capacity. According to our results, IL-7 and IL-15 show promise to promote ex vivo expansion of CART cells, while IL-15 and IL-21 seem better suited for in vivo administration after CART cell infusion. Collectively, these results may have a profound impact on the efficacy of CART cells in both hematologic and solid cancers.


Subject(s)
Cytokines/pharmacology , Cytotoxicity, Immunologic/drug effects , Immunotherapy, Adoptive , Lymphocyte Activation/drug effects , Ovarian Neoplasms/therapy , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes/drug effects , T-Lymphocytes/transplantation , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Coculture Techniques , Female , Humans , Mice, Inbred NOD , Mice, SCID , Ovarian Neoplasms/immunology , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Phenotype , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , Recombinant Fusion Proteins/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Time Factors , Transfection , Xenograft Model Antitumor Assays
7.
Shock ; 44(2): 121-7, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25784524

ABSTRACT

Given the increasing evidence of safe application of elevated temperature in other clinical contexts, we consider the potential for supplemental hyperthermia to augment the effects of vancomycin against staphylococci, a major source of postoperative and posttraumatic sepsis. Laboratory reference strains and libraries of clinical blood isolates of Staphylococcus epidermidis and methicillin-resistant Staphylococcus aureus, both as planktonic cells and as established biofilms, were assessed for thermosensitivity and increased susceptibility to vancomycin in the setting of thermal treatment. In addition to viability measures, patterns of stress gene expression were assessed with quantitative polymerase chain reaction, and structural changes were measured using quantitative transmission electron microscopy. Laboratory strains of both species had reduced growth and biofilm viability at 45°C, a temperature commonly used in other domains such as adjuvant treatments of malignancy. Blood isolates of S. epidermidis were consistent in this regard as well, but significant between-isolate variability in thermosensitivity was seen in blood isolates of S. aureus. Expression profiling and ultrastructural measurements confirmed that elevated temperature was a substantial stressor with or without vancomycin treatment. Our findings suggest that temperature elevations shown to be tolerated in humans in other settings hold the potential to be used as an adjuvant to antibiotic therapy against staphylococcal biofilms.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Hot Temperature , Microbial Sensitivity Tests , Vancomycin/pharmacology , Cell Wall/drug effects , Cell Wall/ultrastructure , Gene Expression Profiling , Gene Expression Regulation , Gene Expression Regulation, Bacterial , Heat-Shock Proteins/metabolism , Humans , Methicillin-Resistant Staphylococcus aureus/drug effects , Microscopy, Electron, Transmission , Serum/chemistry , Staphylococcus epidermidis/drug effects
8.
Interdiscip Perspect Infect Dis ; 2014: 787458, 2014.
Article in English | MEDLINE | ID: mdl-24723947

ABSTRACT

Staphylococcus epidermidis is an important cause of nosocomial infection and bacteremia. It is also a common contaminant of blood cultures and, as a result, there is frequently uncertainty as to its diagnostic significance when recovered in the clinical laboratory. One molecular strategy that might be of value in clarifying the interpretation of S. epidermidis identified in blood culture is multilocus sequence typing. Here, we examined 100 isolates of this species (50 blood isolates representing true bacteremia, 25 likely contaminant isolates, and 25 skin isolates) and the ability of sequence typing to differentiate them. Three machine learning algorithms (classification regression tree, support vector machine, and nearest neighbor) were employed. Genetic variability was substantial between isolates, with 44 sequence types found in 100 isolates. Sequence types 2 and 5 were most commonly identified. However, among the classification algorithms we employed, none were effective, with CART and SVM both yielding only 73% diagnostic accuracy and nearest neighbor analysis yielding only 53% accuracy. Our data mirror previous studies examining the presence or absence of pathogenic genes in that the overlap between truly significant organisms and contaminants appears to prevent the use of MLST in the clarification of blood cultures recovering S. epidermidis.

9.
J Immunol ; 190(1): 48-57, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-23180817

ABSTRACT

Particular alleles of HLA contribute to disease susceptibility and severity in many autoimmune conditions, but the mechanisms underlying these associations are often unknown. In this study, we demonstrate that the shared epitope (SE), an HLA-DRB1-coded sequence motif that is the single most significant genetic risk factor for erosive rheumatoid arthritis, acts as a signal transduction ligand that potently activates osteoclastogenesis, both in vitro and in vivo. The SE enhanced the production of several pro-osteoclastogenic factors and facilitated osteoclast (OC) differentiation in mouse and human cells in vitro. Transgenic mice expressing a human HLA-DRB1 allele that code the SE motif demonstrated markedly higher propensity for osteoclastogenesis and enhanced bone degradation capacity ex vivo. In addition, the SE enhanced the differentiation of Th17 cells expressing the receptor activator for NF-κB ligand. When the two agents were combined, IL-17 and the SE enhanced OC differentiation synergistically. When administered in vivo to mice with collagen-induced arthritis, the SE ligand significantly increased arthritis severity, synovial tissue OC abundance, and bone erosion. Thus, the SE contributes to arthritis severity by activating an OC-mediated bone-destructive pathway. These findings suggest that besides determining the target specificity of autoimmune responses, HLA molecules may influence disease outcomes by shaping the pathogenic consequences of such responses.


Subject(s)
Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/pathology , HLA-DRB1 Chains/genetics , HLA-DRB1 Chains/metabolism , Inflammation Mediators/physiology , Signal Transduction/immunology , Alleles , Animals , Arthritis, Rheumatoid/genetics , Autoimmune Diseases/genetics , Autoimmune Diseases/immunology , Autoimmune Diseases/pathology , Cells, Cultured , Epitopes, T-Lymphocyte/immunology , Genetic Predisposition to Disease , HLA-DRB1 Chains/physiology , Humans , Inflammation Mediators/metabolism , Ligands , Mice , Mice, Transgenic , Osteoclasts/immunology , Osteoclasts/metabolism , Osteoclasts/pathology , Signal Transduction/genetics , Th17 Cells/immunology , Th17 Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...