Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Biochem Biophys Res Commun ; 695: 149464, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38217957

ABSTRACT

DNA double strand breaks (DSBs) can be detrimental to the cell and need to be efficiently repaired. A first step in DSB repair is to bring the free ends in close proximity to enable ligation by non-homologous end-joining (NHEJ), while the more precise, but less available, repair by homologous recombination (HR) requires close proximity of a sister chromatid. The human MRE11-RAD50-NBS1 (MRN) complex, Mre11-Rad50-Xrs2 (MRX) in yeast, is involved in both repair pathways. Here we use nanofluidic channels to study, on the single DNA molecule level, how MRN, MRX and their constituents interact with long DNA and promote DNA bridging. Nanofluidics is a suitable method to study reactions on DNA ends since no anchoring of the DNA end(s) is required. We demonstrate that NBS1 and Xrs2 play important, but differing, roles in the DNA tethering by MRN and MRX. NBS1 promotes DNA bridging by MRN consistent with tethering of a repair template. MRX shows a "synapsis-like" DNA end-bridging, stimulated by the Xrs2 subunit. Our results highlight the different ways MRN and MRX bridge DNA, and the results are in agreement with their key roles in HR and NHEJ, respectively, and contribute to the understanding of the roles of NBS1 and Xrs2 in DSB repair.


Subject(s)
DNA-Binding Proteins , Endodeoxyribonucleases , Saccharomyces cerevisiae Proteins , Humans , DNA/metabolism , DNA Repair , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Endodeoxyribonucleases/genetics , Exodeoxyribonucleases/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism
2.
Nanoscale ; 15(46): 18737-18744, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37953701

ABSTRACT

Amyloid fibril formation is central to the pathology of many diseases, including neurodegenerative disorders such as Alzheimer's and Parkinson's disease. Amyloid fibrils can also have functional and scaffolding roles, for example in bacterial biofilms, and have also been exploited as useful biomaterials. Despite being linear protein homopolymers, amyloid fibrils can exhibit significant structural and morphological polymorphism, making it relevant to study them on the single fibril level. We here introduce the concept of nanofluidic channel analysis to the study of single, fluorescently-labeled amyloid fibrils in solution, monitoring the extension and emission intensity of individual fibrils confined in nanochannels with a depth of 300 nm and a width that gradually increases from 300 to 3000 nm. The change in fibril extension with channel width permitted accurate determination of the persistence length of individual fibrils using Odijk's theory for strongly confined polymers. The technique was applied to amyloid fibrils prepared from the Alzheimer's related peptide amyloid-ß(1-42) and the Parkinson's related protein α-synuclein, obtaining mean persistence lengths of 5.9 ± 4.5 µm and 3.0 ± 1.6 µm, respectively. The broad distributions of fibril persistence lengths indicate that amyloid fibril polymorphism can manifest in their physical properties. Interestingly, the α-synuclein fibrils had lower persistence lengths than the amyloid-ß(1-42) fibrils, despite being thicker. Furthermore, there was no obvious within-sample correlation between the fluorescence emission intensity per unit length of the labelled fibrils and their persistence lengths, suggesting that stiffness may not be proportional to thickness. We foresee that the nanofluidics methodology established here will be a useful tool to study amyloid fibrils on the single fibril level to gain information on heterogeneity in their physical properties and interactions.


Subject(s)
Alzheimer Disease , Parkinson Disease , Humans , Amyloid/chemistry , alpha-Synuclein/chemistry , Alzheimer Disease/metabolism , Amyloid beta-Peptides/chemistry , Parkinson Disease/metabolism
3.
Nucleic Acids Res ; 49(5): 2629-2641, 2021 03 18.
Article in English | MEDLINE | ID: mdl-33590005

ABSTRACT

We use single-molecule techniques to characterize the dynamics of prokaryotic DNA repair by non-homologous end-joining (NHEJ), a system comprised only of the dimeric Ku and Ligase D (LigD). The Ku homodimer alone forms a ∼2 s synapsis between blunt DNA ends that is increased to ∼18 s upon addition of LigD, in a manner dependent on the C-terminal arms of Ku. The synapsis lifetime increases drastically for 4 nt complementary DNA overhangs, independently of the C-terminal arms of Ku. These observations are in contrast to human Ku, which is unable to bridge either of the two DNA substrates. We also demonstrate that bacterial Ku binds the DNA ends in a cooperative manner for synapsis initiation and remains stably bound at DNA junctions for several hours after ligation is completed, indicating that a system for removal of the proteins is active in vivo. Together these experiments shed light on the dynamics of bacterial NHEJ in DNA end recognition and processing. We speculate on the evolutionary similarities between bacterial and eukaryotic NHEJ and discuss how an increased understanding of bacterial NHEJ can open the door for future antibiotic therapies targeting this mechanism.


Subject(s)
Bacterial Proteins/metabolism , DNA End-Joining Repair , Ku Autoantigen/metabolism , Bacillus subtilis/genetics , Bacterial Proteins/chemistry , DNA/metabolism , DNA Ligases/metabolism , Ku Autoantigen/chemistry , Protein Multimerization
4.
Biochem Biophys Res Commun ; 533(1): 175-180, 2020 11 26.
Article in English | MEDLINE | ID: mdl-32951838

ABSTRACT

We demonstrate how a recently developed nanofluidic device can be used to study protein-induced compaction of genome-length DNA freely suspended in solution. The protein we use in this study is the hepatitis C virus core protein (HCVcp), which is a positively charged, intrinsically disordered protein. Using nanofluidic devices in combination with fluorescence microscopy, we observe that protein-induced compaction preferentially begins at the ends of linear DNA. This observation would be difficult to make with many other single-molecule techniques, which generally require the DNA ends to be anchored to a substrate. We also demonstrate that this protein-induced compaction is reversible and can be dynamically modulated by exposing the confined DNA molecules to solutions containing either HCVcp (to promote compaction) or Proteinase K (to disassemble the compact nucleo-protein complex). Although the natural binding partner for HCVcp is genomic viral RNA, the general biophysical principles governing protein-induced compaction of DNA are likely relevant for a broad range of nucleic acid-binding proteins and their targets.


Subject(s)
DNA/metabolism , Hepacivirus/metabolism , Intrinsically Disordered Proteins/metabolism , Lab-On-A-Chip Devices , Viral Core Proteins/metabolism , DNA/chemistry , Equipment Design , Hepatitis C/metabolism , Hepatitis C/virology , Humans , Ions/metabolism , Nucleic Acid Conformation
5.
Proc Natl Acad Sci U S A ; 117(35): 21403-21412, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32817418

ABSTRACT

The early steps of DNA double-strand break (DSB) repair in human cells involve the MRE11-RAD50-NBS1 (MRN) complex and its cofactor, phosphorylated CtIP. The roles of these proteins in nucleolytic DSB resection are well characterized, but their role in bridging the DNA ends for efficient and correct repair is much less explored. Here we study the binding of phosphorylated CtIP, which promotes the endonuclease activity of MRN, to single long (∼50 kb) DNA molecules using nanofluidic channels and compare it to the yeast homolog Sae2. CtIP bridges DNA in a manner that depends on the oligomeric state of the protein, and truncated mutants demonstrate that the bridging depends on CtIP regions distinct from those that stimulate the nuclease activity of MRN. Sae2 is a much smaller protein than CtIP, and its bridging is significantly less efficient. Our results demonstrate that the nuclease cofactor and structural functions of CtIP may depend on the same protein population, which may be crucial for CtIP functions in both homologous recombination and microhomology-mediated end-joining.


Subject(s)
DNA Breaks, Double-Stranded , DNA, Circular/metabolism , Endodeoxyribonucleases/metabolism , Animals , Endonucleases/metabolism , Humans , Nanotechnology , Phosphorylation , Saccharomyces cerevisiae Proteins/metabolism , Saccharomycetales , Sf9 Cells , Spodoptera
6.
ACS Med Chem Lett ; 11(5): 766-772, 2020 May 14.
Article in English | MEDLINE | ID: mdl-32435383

ABSTRACT

The HIV-1 nucleocapsid (NC) protein is a small basic DNA and RNA binding protein that is absolutely necessary for viral replication and thus represents a target of great interest to develop new anti-HIV agents. Moreover, the highly conserved sequence offers the opportunity to escape the drug resistance (DR) that emerged following the highly active antiretroviral therapy (HAART) treatment. On the basis of our previous research, nordihydroguaiaretic acid 1 acts as a NC inhibitor showing moderate antiviral activity and suboptimal drug-like properties due to the presence of the catechol moieties. A bioisosteric catechol replacement approach led us to identify the 5-dihydroxypyrimidine-6-carboxamide substructure as a privileged scaffold of a new class of HIV-1 NC inhibitors. Hit validation efforts led to the identification of optimized analogs, as represented by compound 28, showing improved NC inhibition and antiviral activity as well as good ADME and PK properties.

7.
Chemistry ; 25(30): 7375-7386, 2019 05 28.
Article in English | MEDLINE | ID: mdl-30882930

ABSTRACT

Thienoguanosine (th G) is an isomorphic analogue of guanosine with promising potentialities as fluorescent DNA label. As a free probe in protic solvents, th G exists in two tautomeric forms, identified as the H1, being the only one observed in nonprotic solvents, and H3 keto-amino tautomers. We herein investigate the photophysics of th G in solvents of different polarity, from water to dioxane, by combining time-resolved fluorescence with PCM/TD-DFT and CASSCF calculations. Fluorescence lifetimes of 14.5-20.5 and 7-13 ns were observed for the H1 and H3 tautomers, respectively, in the tested solvents. In methanol and ethanol, an additional fluorescent decay lifetime (≈3 ns) at the blue emission side (λ≈430 nm) as well as a 0.5 ns component with negative amplitude at the red edge of the spectrum, typical of an excited-state reaction, were observed. Our computational analysis explains the solvent effects observed on the tautomeric equilibrium. The main radiative and nonradiative deactivation routes have been mapped by PCM/TD-DFT calculations in solution and CASSCF in the gas phase. The most easily accessible conical intersection, involving an out-of plane motion of the sulfur atom in the five-membered ring of th G, is separated by a sizeable energy barrier (≥0.4 eV) from the minimum of the spectroscopic state, which explains the large experimental fluorescence quantum yield.

8.
Chemistry ; 24(52): 13850-13861, 2018 Sep 18.
Article in English | MEDLINE | ID: mdl-29989220

ABSTRACT

Nucleic acids are characterized by a variety of dynamically interconverting structures that play a major role in transcriptional and translational regulation as well as recombination and repair. To monitor these interconversions, Förster resonance energy transfer (FRET)-based techniques can be used, but require two fluorophores that are typically large and can alter the DNA/RNA structure and protein binding. Additionally, events that do not alter the donor/acceptor distance and/or angular relationship are frequently left undetected. A more benign approach relies on fluorescent nucleobases that can substitute their native counterparts with minimal perturbation, such as the recently developed 2-thienyl-3-hydroxychromone (3HCnt) and thienoguanosine (th G). To demonstrate the potency of 3HCnt and th G in deciphering interconversion mechanisms, we used the conversion of the (-)DNA copy of the HIV-1 primer binding site (-)PBS stem-loop into (+)/(-)PBS duplex, as a model system. When incorporated into the (-)PBS loop, the two probes were found to be highly sensitive to the individual steps both in the absence and the presence of a nucleic acid chaperone, providing the first complete mechanistic description of this critical process in HIV-1 replication. The combination of the two distinct probes appears to be instrumental for characterizing structural transitions of nucleic acids under various stimuli.


Subject(s)
Fluorescence Resonance Energy Transfer/methods , Nucleic Acids/chemistry , Nucleosides/chemistry , Binding Sites , Fluorescent Dyes/chemistry , Kinetics , Nucleic Acid Conformation , Protein Binding , Protein Conformation , Proteins/chemistry , Thermodynamics
9.
Angew Chem Int Ed Engl ; 55(28): 7974-7978, 2016 07 04.
Article in English | MEDLINE | ID: mdl-27273741

ABSTRACT

Thienoguanosine ((th) G) is an isomorphic nucleoside analogue acting as a faithful fluorescent substitute of G, with respectable quantum yield in oligonucleotides. Photophysical analysis of (th) G reveals the existence of two ground-state tautomers with significantly shifted absorption and emission wavelengths, and high quantum yield in buffer. Using (TD)-DFT calculations, the tautomers were identified as the H1 and H3 keto-amino tautomers. When incorporated into the loop of (-)PBS, the (-)DNA copy of the HIV-1 primer binding site, both tautomers are observed and show differential sensitivity to protein binding. The red-shifted H1 tautomer is strongly favored in matched (-)/(+)PBS duplexes, while the relative emission of the H3 tautomer can be used to detect single nucleotide polymorphisms. These tautomers and their distinct environmental sensitivity provide unprecedented information channels for analyzing G residues in oligonucleotides and their complexes.


Subject(s)
Fluorescent Dyes/chemistry , Guanosine/analogs & derivatives , Oligonucleotides/chemistry , Binding Sites , HIV-1/chemistry , Quantum Theory , Spectrometry, Fluorescence , Stereoisomerism
10.
J Am Chem Soc ; 137(9): 3185-8, 2015 Mar 11.
Article in English | MEDLINE | ID: mdl-25714036

ABSTRACT

The archetypical fluorescent nucleoside analog, 2-aminopurine (2Ap), has been used in countless assays, though it suffers from very low quantum yield, especially when included in double strands, and from the fact that its residual emission frequently does not represent biologically relevant conformations. To conquer 2Ap's deficiencies, deoxythienoguanosine (d(th)G) was recently developed. Here, steady-state and time-resolved fluorescence spectroscopy was used to compare the ability of 2Ap and d(th)G, to substitute and provide relevant structural and dynamical information on a key G residue in the (-) DNA copy of the HIV-1 primer binding site, (-)PBS, both in its stem loop conformation and in the corresponding (-)/(+)PBS duplex. In contrast to 2Ap, this fluorescent nucleoside when included in (-)PBS or (-)/(+)PBS duplex fully preserves their stability and exhibits a respectable quantum yield and a simple fluorescence decay, with marginal amounts of dark species. In further contrast to 2Ap, the fluorescently detected d(th)G species reflect the predominantly populated G conformers, which allows exploring their relevant dynamics. Being able to perfectly substitute G residues, d(th)G will transform nucleic acid biophysics by allowing, for the first time, to selectively and faithfully monitor the conformations and dynamics of a given G residue in a DNA sequence.


Subject(s)
2-Aminopurine/chemistry , DNA, Viral/chemistry , Guanosine/metabolism , HIV-1/metabolism , Pyrimidinones/chemistry , Thiophenes/chemistry , 2-Aminopurine/metabolism , Binding Sites , DNA, Viral/metabolism , Fluorescence Polarization , Guanosine/chemistry , Nucleic Acid Heteroduplexes/chemistry , Nucleic Acid Heteroduplexes/metabolism , Pyrimidinones/metabolism , Spectrometry, Fluorescence/methods , Thiophenes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...