Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Gene ; 853: 147045, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36503892

ABSTRACT

DNA-binding proteins play a vital role in biological activity including DNA replication, DNA packing, and DNA reparation. DNA-binding proteins can be classified into single-stranded DNA-binding proteins (SSBs) or double-stranded DNA-binding proteins (DSBs). Determining whether a protein is DSB or SSB helps determine the protein's function. Therefore, many studies have been conducted to accurately identify DSB and SSB in recent years. Despite all the efforts have been made so far, the DSB and SSB prediction performance remains limited. In this study, we propose a new method called CNN-Pred to accurately predict DSB and SSB. To build CNN-Pred, we first extract evolutionary-based features in the form of mono-gram and bi-gram profiles using position specific scoring matrix (PSSM). We then, use 1D-convolutional neural network (CNN) as the classifier to our extracted features. Our results demonstrate that CNN-Pred can enhance the DSB and SSB prediction accuracies by more than 4%, on the independent test compared to previous studies found in the literature. CNN-pred as a standalone tool and all its source codes are publicly available at: https://github.com/MLBC-lab/CNN-Pred.


Subject(s)
DNA , Neural Networks, Computer , DNA/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , DNA Replication , Software
2.
BMC Bioinformatics ; 22(Suppl 6): 316, 2021 Jun 10.
Article in English | MEDLINE | ID: mdl-34112086

ABSTRACT

BACKGROUND: The novel coronavirus (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2, and within a few months, it has become a global pandemic. This forced many affected countries to take stringent measures such as complete lockdown, shutting down businesses and trade, as well as travel restrictions, which has had a tremendous economic impact. Therefore, having knowledge and foresight about how a country might be able to contain the spread of COVID-19 will be of paramount importance to the government, policy makers, business partners and entrepreneurs. To help social and administrative decision making, a model that will be able to forecast when a country might be able to contain the spread of COVID-19 is needed. RESULTS: The results obtained using our long short-term memory (LSTM) network-based model are promising as we validate our prediction model using New Zealand's data since they have been able to contain the spread of COVID-19 and bring the daily new cases tally to zero. Our proposed forecasting model was able to correctly predict the dates within which New Zealand was able to contain the spread of COVID-19. Similarly, the proposed model has been used to forecast the dates when other countries would be able to contain the spread of COVID-19. CONCLUSION: The forecasted dates are only a prediction based on the existing situation. However, these forecasted dates can be used to guide actions and make informed decisions that will be practically beneficial in influencing the real future. The current forecasting trend shows that more stringent actions/restrictions need to be implemented for most of the countries as the forecasting model shows they will take over three months before they can possibly contain the spread of COVID-19.


Subject(s)
COVID-19 , Communicable Disease Control , Forecasting , Humans , New Zealand , Pandemics , SARS-CoV-2
3.
PeerJ Comput Sci ; 7: e375, 2021.
Article in English | MEDLINE | ID: mdl-33817023

ABSTRACT

A human-computer interaction (HCI) system can be used to detect different categories of the brain wave signals that can be beneficial for neurorehabilitation, seizure detection and sleep stage classification. Research on developing HCI systems using brain wave signals has progressed a lot over the years. However, real-time implementation, computational complexity and accuracy are still a concern. In this work, we address the problem of selecting the appropriate filtering frequency band while also achieving a good system performance by proposing a frequency-based approach using long short-term memory network (LSTM) for recognizing different brain wave signals. Adaptive filtering using genetic algorithm is incorporated for a hybrid system utilizing common spatial pattern and LSTM network. The proposed method (OPTICAL+) achieved an overall average classification error rate of 30.41% and a kappa coefficient value of 0.398, outperforming the state-of-the-art methods. The proposed OPTICAL+ predictor can be used to develop improved HCI systems that will aid in neurorehabilitation and may also be beneficial for sleep stage classification and seizure detection.

4.
Anal Biochem ; 612: 113954, 2021 01 01.
Article in English | MEDLINE | ID: mdl-32946833

ABSTRACT

BACKGROUND: DNA-binding proteins perform important roles in cellular processes and are involved in many biological activities. These proteins include crucial protein-DNA binding domains and can interact with single-stranded or double-stranded DNA, and accordingly classified as single-stranded DNA-binding proteins (SSBs) or double-stranded DNA-binding proteins (DSBs). Computational prediction of SSBs and DSBs helps in annotating protein functions and understanding of protein-binding domains. RESULTS: Performance is reported using the DNA-binding protein dataset that was recently introduced by Wang et al., [1]. The proposed method achieved a sensitivity of 0.600, specificity of 0.792, AUC of 0.758, MCC of 0.369, accuracy of 0.744, and F-measure of 0.536, on the independent test set. CONCLUSION: The proposed method with the hidden Markov model (HMM) profiles for feature extraction, outperformed the benchmark method in the literature and achieved an overall improvement of approximately 3%. The source code and supplementary information of the proposed method is available at https://github.com/roneshsharma/Predict-DNA-binding-proteins/wiki.


Subject(s)
Computational Biology/methods , DNA, Single-Stranded/chemistry , DNA, Single-Stranded/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , DNA/chemistry , DNA/metabolism , Amino Acid Sequence , Databases, Protein , Markov Chains , Models, Statistical , Protein Binding , Protein Domains , Sequence Analysis, Protein/methods , Software , Support Vector Machine
5.
BMC Genomics ; 19(Suppl 9): 982, 2019 Apr 18.
Article in English | MEDLINE | ID: mdl-30999862

ABSTRACT

BACKGROUND: Post-translational modifications are viewed as an important mechanism for controlling protein function and are believed to be involved in multiple important diseases. However, their profiling using laboratory-based techniques remain challenging. Therefore, making the development of accurate computational methods to predict post-translational modifications is particularly important for making progress in this area of research. RESULTS: This work explores the use of four half-sphere exposure-based features for computational prediction of sumoylation sites. Unlike most of the previously proposed approaches, which focused on patterns of amino acid co-occurrence, we were able to demonstrate that protein structural based features could be sufficiently informative to achieve good predictive performance. The evaluation of our method has demonstrated high sensitivity (0.9), accuracy (0.89) and Matthew's correlation coefficient (0.78-0.79). We have compared these results to the recently released pSumo-CD method and were able to demonstrate better performance of our method on the same evaluation dataset. CONCLUSIONS: The proposed predictor HseSUMO uses half-sphere exposures of amino acids to predict sumoylation sites. It has shown promising results on a benchmark dataset when compared with the state-of-the-art method. The extracted data of this study can be accessed at https://github.com/YosvanyLopez/HseSUMO .


Subject(s)
Algorithms , Amino Acids/chemistry , Computational Biology/methods , Proteins/chemistry , Proteins/metabolism , Sumoylation , Binding Sites , Humans , Support Vector Machine
6.
BMC Bioinformatics ; 19(Suppl 13): 378, 2019 Feb 04.
Article in English | MEDLINE | ID: mdl-30717652

ABSTRACT

BACKGROUND: Molecular Recognition Features (MoRFs) are short protein regions present in intrinsically disordered protein (IDPs) sequences. MoRFs interact with structured partner protein and upon interaction, they undergo a disorder-to-order transition to perform various biological functions. Analyses of MoRFs are important towards understanding their function. RESULTS: Performance is reported using the MoRF dataset that has been previously used to compare the other existing MoRF predictors. The performance obtained in this study is equivalent to the benchmarked OPAL predictor, i.e., OPAL achieved AUC of 0.815, whereas the model in this study achieved AUC of 0.819 using TEST set. CONCLUSION: Achieving comparable performance, the proposed method can be used as an alternative approach for MoRF prediction.


Subject(s)
Computational Biology/methods , Intrinsically Disordered Proteins/chemistry , Amino Acid Sequence , Area Under Curve , Databases, Protein , Protein Domains
7.
Proteomics ; 19(6): e1800058, 2019 03.
Article in English | MEDLINE | ID: mdl-30324701

ABSTRACT

Intrinsically disordered proteins (IDPs) contain long unstructured regions, which play an important role in their function. These intrinsically disordered regions (IDRs) participate in binding events through regions called molecular recognition features (MoRFs). Computational prediction of MoRFs helps identify the potentially functional regions in IDRs. In this study, OPAL+, a novel MoRF predictor, is presented. OPAL+ uses separate models to predict MoRFs of varying lengths along with incorporating the hidden Markov model (HMM) profiles and physicochemical properties of MoRFs and their flanking regions. Together, these features help OPAL+ achieve a marginal performance improvement of 0.4-0.7% over its predecessor for diverse MoRF test sets. This performance improvement comes at the expense of increased run time as a result of the requirement of HMM profiles. OPAL+ is available for download at https://github.com/roneshsharma/OPAL-plus/wiki/OPAL-plus-Download.


Subject(s)
Intrinsically Disordered Proteins/chemistry , Proteomics/methods , Animals , Humans , Markov Chains , Protein Conformation , Software , Support Vector Machine
8.
Bioinformatics ; 34(11): 1850-1858, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29360926

ABSTRACT

Motivation: Intrinsically disordered proteins lack stable 3-dimensional structure and play a crucial role in performing various biological functions. Key to their biological function are the molecular recognition features (MoRFs) located within long disordered regions. Computationally identifying these MoRFs from disordered protein sequences is a challenging task. In this study, we present a new MoRF predictor, OPAL, to identify MoRFs in disordered protein sequences. OPAL utilizes two independent sources of information computed using different component predictors. The scores are processed and combined using common averaging method. The first score is computed using a component MoRF predictor which utilizes composition and sequence similarity of MoRF and non-MoRF regions to detect MoRFs. The second score is calculated using half-sphere exposure (HSE), solvent accessible surface area (ASA) and backbone angle information of the disordered protein sequence, using information from the amino acid properties of flanks surrounding the MoRFs to distinguish MoRF and non-MoRF residues. Results: OPAL is evaluated using test sets that were previously used to evaluate MoRF predictors, MoRFpred, MoRFchibi and MoRFchibi-web. The results demonstrate that OPAL outperforms all the available MoRF predictors and is the most accurate predictor available for MoRF prediction. It is available at http://www.alok-ai-lab.com/tools/opal/. Contact: ashwini@hgc.jp or alok.sharma@griffith.edu.au. Supplementary information: Supplementary data are available at Bioinformatics online.


Subject(s)
Intrinsically Disordered Proteins/metabolism , Sequence Analysis, Protein/methods , Software , Computational Biology/methods , Humans , Intrinsically Disordered Proteins/chemistry
9.
J Theor Biol ; 437: 9-16, 2018 01 21.
Article in English | MEDLINE | ID: mdl-29042212

ABSTRACT

MOTIVATION: Intrinsically Disordered Proteins (IDPs) lack stable tertiary structure and they actively participate in performing various biological functions. These IDPs expose short binding regions called Molecular Recognition Features (MoRFs) that permit interaction with structured protein regions. Upon interaction they undergo a disorder-to-order transition as a result of which their functionality arises. Predicting these MoRFs in disordered protein sequences is a challenging task. METHOD: In this study, we present MoRFpred-plus, an improved predictor over our previous proposed predictor to identify MoRFs in disordered protein sequences. Two separate independent propensity scores are computed via incorporating physicochemical properties and HMM profiles, these scores are combined to predict final MoRF propensity score for a given residue. The first score reflects the characteristics of a query residue to be part of MoRF region based on the composition and similarity of assumed MoRF and flank regions. The second score reflects the characteristics of a query residue to be part of MoRF region based on the properties of flanks associated around the given residue in the query protein sequence. The propensity scores are processed and common averaging is applied to generate the final prediction score of MoRFpred-plus. RESULTS: Performance of the proposed predictor is compared with available MoRF predictors, MoRFchibi, MoRFpred, and ANCHOR. Using previously collected training and test sets used to evaluate the mentioned predictors, the proposed predictor outperforms these predictors and generates lower false positive rate. In addition, MoRFpred-plus is a downloadable predictor, which makes it useful as it can be used as input to other computational tools. AVAILABILITY: https://github.com/roneshsharma/MoRFpred-plus/wiki/MoRFpred-plus:-Download.


Subject(s)
Computational Biology/methods , Intrinsically Disordered Proteins/chemistry , Protein Domains , Support Vector Machine , Algorithms , Amino Acid Sequence , Binding Sites/genetics , Intrinsically Disordered Proteins/genetics , Intrinsically Disordered Proteins/metabolism , Models, Theoretical , Protein Binding
10.
BMC Bioinformatics ; 17(Suppl 19): 504, 2016 Dec 22.
Article in English | MEDLINE | ID: mdl-28155710

ABSTRACT

BACKGROUND: Intrinsically Disordered Proteins (IDPs) lack an ordered three-dimensional structure and are enriched in various biological processes. The Molecular Recognition Features (MoRFs) are functional regions within IDPs that undergo a disorder-to-order transition on binding to a partner protein. Identifying MoRFs in IDPs using computational methods is a challenging task. METHODS: In this study, we introduce hidden Markov model (HMM) profiles to accurately identify the location of MoRFs in disordered protein sequences. Using windowing technique, HMM profiles are utilised to extract features from protein sequences and support vector machines (SVM) are used to calculate a propensity score for each residue. Two different SVM kernels with high noise tolerance are evaluated with a varying window size and the scores of the SVM models are combined to generate the final propensity score to predict MoRF residues. The SVM models are designed to extract maximal information between MoRF residues, its neighboring regions (Flanks) and the remainder of the sequence (Others). RESULTS: To evaluate the proposed method, its performance was compared to that of other MoRF predictors; MoRFpred and ANCHOR. The results show that the proposed method outperforms these two predictors. CONCLUSIONS: Using HMM profile as a source of feature extraction, the proposed method indicates improvement in predicting MoRFs in disordered protein sequences.


Subject(s)
Computational Biology/methods , Intrinsically Disordered Proteins/chemistry , Markov Chains , Models, Theoretical , Support Vector Machine , Algorithms , Humans
11.
IEEE Trans Nanobioscience ; 14(8): 915-26, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26584499

ABSTRACT

In this study, we used structural and evolutionary based features to represent the sequences of gram-positive and gram-negative subcellular localizations. To do this, we proposed a normalization method to construct a normalize Position Specific Scoring Matrix (PSSM) using the information from original PSSM. To investigate the effectiveness of the proposed method we compute feature vectors from normalize PSSM and by applying support vector machine (SVM) and naïve Bayes classifier, respectively, we compared achieved results with the previously reported results. We also computed features from original PSSM and normalized PSSM and compared their results. The archived results show enhancement in gram-positive and gram-negative subcellular localizations. Evaluating localization for each feature, our results indicate that employing SVM and concatenating features (amino acid composition feature, Dubchak feature (physicochemical-based features), normalized PSSM based auto-covariance feature and normalized PSSM based bigram feature) have higher accuracy while employing naïve Bayes classifier with normalized PSSM based auto-covariance feature proves to have high sensitivity for both benchmarks. Our reported results in terms of overall locative accuracy is 84.8% and overall absolute accuracy is 85.16% for gram-positive dataset; and, for gram-negative dataset, overall locative accuracy is 85.4% and overall absolute accuracy is 86.3%.


Subject(s)
Gram-Negative Bacteria/isolation & purification , Gram-Positive Bacteria/isolation & purification , Intracellular Space/chemistry , Models, Statistical , Support Vector Machine , Bayes Theorem , Gram-Negative Bacteria/chemistry , Gram-Negative Bacteria/cytology , Gram-Positive Bacteria/chemistry , Gram-Positive Bacteria/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...