Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 19263, 2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36357484

ABSTRACT

The effect of radiation-reaction force on the dynamics of a charged particle in an intense focused light wave is investigated using the physically appealing Hartemann-Luhmann equation of motion. It is found that, irrespective of the choice of initial conditions, radiation reaction force causes the charged particle to cross the focal region, provided the particle is driven into regions where the radiation reaction force dominates over the Lorentz force, thus enhancing the forward energy gained by the particle from the intense light wave. This result is in sharp contrast to the well known result, derived in the absence of radiation reaction forces, where for certain initial conditions the particle reflects from the high intensity region of the focused light wave, thereby losing forward energy. From the perspective of energy gain, our studies clearly show that the parameter space for forward energy gain which is reduced by ponderomotive effects is compensated by radiation reaction effects. These results, which are of relevance to the present day direct laser acceleration schemes of charged particle, also agrees with that obtained using the well known Landau-Lifshitz equation of motion.

2.
Sci Rep ; 11(1): 10456, 2021 May 17.
Article in English | MEDLINE | ID: mdl-34001985

ABSTRACT

Inertial particles advected by a background flow can show complex structures. We consider inertial particles in a 2D Taylor-Green (TG) flow and characterize particle dynamics as a function of the particle's Stokes number using dynamic mode decomposition (DMD) method from particle image velocimetry (PIV) like-data. We observe the formation of caustic structures and analyze them using DMD to (a) determine the Stokes number of the particles, and (b) estimate the particle Stokes number composition. Our analysis in this idealized flow will provide useful insight to analyze inertial particles in more complex or turbulent flows. We propose that the DMD technique can be used to perform similar analysis on an experimental system.

SELECTION OF CITATIONS
SEARCH DETAIL
...