Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Pharmacol ; 644(1-3): 220-9, 2010 Oct 10.
Article in English | MEDLINE | ID: mdl-20621086

ABSTRACT

A promising therapeutic approach to reduce pathological inflammation is to inhibit the increased production of pro-inflammatory cytokines (e.g., TNF-alpha, IL-6). In this study, we investigated the anti-inflammatory potential of 7-hydroxyfrullanolide (7HF). 7HF is an orally bioavailable, small molecule sesquiterpene lactone isolated from the fruit of Sphaeranthus indicus. 7HF significantly and dose-dependently diminished induced and spontaneous production of TNF-alpha and IL-6 from freshly isolated human mononuclear cells, synovial tissue cells isolated from patients with active rheumatoid arthritis and BALB/c mice. Oral administration of 7HF significantly protected C57BL/6J mice against endotoxin-mediated lethality. In the dextran sulfate sodium (DSS) model of murine colitis, oral administration of 7HF prevented DSS-induced weight loss, attenuated rectal bleeding, improved disease activity index and diminished shortening of the colon of C57BL/6J mice. Histological analyses of colonic tissues revealed that 7HF attenuated DSS-induced colonic edema, leukocyte infiltration in the colonic mucosa and afforded significant protection against DSS-induced crypt damage. 7HF was also significantly efficacious in attenuating carrageenan-induced paw edema in Wistar rats after oral administration. In the collagen-induced arthritis in DBA/1J mice, 7HF significantly reduced disease associated increases in articular index and paw thickness, protected against bone erosion and joint space narrowing and prominently diminished joint destruction, hyperproliferative pannus formation and infiltration of inflammatory cells. Collectively, these results provide evidence that 7HF-mediated inhibition of pro-inflammatory cytokines functionally results in marked protection in experimental models of acute and chronic inflammation.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Asteraceae/chemistry , Inflammation/drug therapy , Sesquiterpenes/pharmacology , Animals , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/isolation & purification , Arthritis, Experimental/drug therapy , Arthritis, Experimental/physiopathology , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/physiopathology , Colitis/drug therapy , Colitis/physiopathology , Disease Models, Animal , Dose-Response Relationship, Drug , Female , Humans , Inflammation/physiopathology , Inflammation Mediators/metabolism , Interleukin-6/metabolism , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Inbred DBA , Rats , Rats, Wistar , Sesquiterpenes/administration & dosage , Sesquiterpenes/isolation & purification , Tumor Necrosis Factor-alpha/drug effects , Tumor Necrosis Factor-alpha/metabolism
2.
Inflammopharmacology ; 18(4): 157-68, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20495878

ABSTRACT

The present study was designed to evaluate, P2026 [(2-((2-(nitrooxy)ethyl)disulfanyl)ethyl 2-(2-(2,6-dichlorophenylamino)phenyl)acetate)], a novel NO (nitric oxide) donor prodrug of diclofenac for its ability to release NO and diclofenac, and whether P2026 provides advantage of improved activity/gastric tolerability over diclofenac. Oral bioavailability of P2026 was estimated from plasma concentration of diclofenac and nitrate/nitrite (NOx). Anti-inflammatory activity was evaluated in three different models of inflammation: acute (carrageenan-induced paw oedema), chronic (adjuvant-induced arthritis), and systemic (lipopolysaccharide-induced endotoxic shock). Gastric tolerability was evaluated from compound's propensity to cause gastric ulcers. P2026 exhibited dose-dependent diclofenac and NOx release. Similar to diclofenac, P2026 showed potent anti-inflammatory activity in acute and chronic model, whereas it improved activity in systemic model. Both diclofenac and P2026 inhibited gastric prostaglandin, but only diclofenac produced dose-dependent haemorrhagic ulcers. Thus, the results suggest that coupling of NO and diclofenac contribute to improved gastric tolerability while retaining the anti-inflammatory properties of diclofenac.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Diclofenac/analogs & derivatives , Inflammation/drug therapy , Nitrates/administration & dosage , Nitrates/pharmacology , Nitric Oxide Donors/pharmacology , Prodrugs/pharmacology , Administration, Oral , Animals , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Anti-Inflammatory Agents, Non-Steroidal/toxicity , Arthritis, Experimental/drug therapy , Biological Availability , Cyclooxygenase Inhibitors/administration & dosage , Cyclooxygenase Inhibitors/pharmacokinetics , Cyclooxygenase Inhibitors/pharmacology , Cyclooxygenase Inhibitors/toxicity , Diclofenac/administration & dosage , Diclofenac/pharmacokinetics , Diclofenac/pharmacology , Diclofenac/toxicity , Dinoprostone/biosynthesis , Drug Evaluation, Preclinical , Epoprostenol/biosynthesis , Gastric Mucosa/metabolism , Male , Nitrates/pharmacokinetics , Nitrates/toxicity , Nitric Oxide/metabolism , Nitric Oxide Donors/administration & dosage , Nitric Oxide Donors/pharmacokinetics , Nitric Oxide Donors/toxicity , Prodrugs/administration & dosage , Prodrugs/pharmacokinetics , Prodrugs/toxicity , Rats , Rats, Sprague-Dawley , Stomach/drug effects , Stomach Ulcer/chemically induced
3.
Metabolism ; 58(10): 1503-16, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19608207

ABSTRACT

Insulin resistance is central to the pathogenesis of type 2 diabetes mellitus. Previous studies have demonstrated that compounds that cause adipogenesis and improve glucose uptake in 3T3-L1 cells are potential insulin sensitizers. Therefore, we evaluated one such compound, 18F9, for (1) adipogenesis in human subcutaneous preadipocyte (SQ) cells, (2) glucose uptake in human skeletal muscle myotubes and SQ cells, and (3) antidiabetic activity in db/db mice. We also investigated its effect on ex vivo glucose uptake in soleus muscle isolated from continuously treated db/db mice. Gene expression profiling in soleus muscle and epididymal fat of db/db mice was performed to understand its effect on glucose metabolism, lipid metabolism, and thermogenesis. 18F9 enhanced adipogenesis in SQ cells and increased glucose uptake in SQ and human skeletal muscle myotubes cells. In db/db mice, 18F9 exhibited dose-dependent reduction in plasma glucose and insulin level. Interestingly, 18F9 was as efficacious as rosiglitazone but did not cause body weight gain and hepatic adverse effects. In addition, 18F9 demonstrated no change in plasma volume in Wistar rats. Furthermore, it enhanced ex vivo glucose uptake in soleus muscles in these mice, which substantiates our in vitro findings. Human peroxisome proliferator activated receptor-gamma transactivation assay revealed a weak peroxisome proliferator activated receptor-gamma transactivation potential (44% of rosiglitazone at 10 mumol/L) of 18F9. Gene expression profiling indicated that 18F9 increased insulin sensitivity mainly through a phosphoinositide 3-kinase-dependent mechanism. 18F9 also up-regulated genes involved in lipid transport and synthesis at par with rosiglitazone. Unlike rosiglitazone, 18F9 elevated the expression of Pdk4. In addition, 18F9 elevated the expression of glycogen synthase and adiponectin significantly higher than rosiglitazone. Taken together, these observations suggest that 18F9 is a safer and potent insulin sensitizer that demonstrates promising antidiabetic activity and is worth further development.


Subject(s)
Glucose/metabolism , Hypoglycemic Agents/pharmacology , Insulin/pharmacology , Pyridines/pharmacology , Thiophenes/pharmacology , Adipocytes/drug effects , Adipogenesis/drug effects , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Animals , Cells, Cultured , Dose-Response Relationship, Drug , Gene Expression Profiling , Heart/drug effects , Humans , Hypoglycemic Agents/pharmacokinetics , Indicators and Reagents , Lipid Metabolism/drug effects , Male , Mice , Mice, Inbred C57BL , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Organ Size/drug effects , PPAR gamma/metabolism , Plasma Volume/drug effects , Reverse Transcriptase Polymerase Chain Reaction , Thermogenesis/drug effects , Thienopyridines
4.
Drug Discov Today ; 14(7-8): 394-400, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19185058

ABSTRACT

Docking, virtual screening and structure-based drug design are routinely used in modern drug discovery programs. Although current docking methods deal with flexible ligands, managing receptor flexibility has proved to be challenging. In this brief review, we present the current state-of-the-art for computationally handling receptor flexibility, including a novel statistical computational approach published recently. We conclude, from a comparison of the different approaches, that a combination of methods is likely to provide the most reliable solution to the problem of finding the right protein conformation for a given ligand.


Subject(s)
Computational Biology/methods , Models, Molecular , Protein Conformation , Proteins/chemistry , Algorithms , Animals , Binding Sites , Humans , Ligands , Protein Binding , Structure-Activity Relationship
5.
Metabolism ; 58(3): 333-43, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19217448

ABSTRACT

Recently, several in vitro studies have shown that GPR40 receptor activation by free fatty acids (FFAs) results in glucose-dependent insulin secretion. However, whether GPR40 receptor activation results in glucose-dependent insulin secretion in vivo in rats is not known. Therefore, we evaluated the effect of synthetic GPR40 receptor agonist (compound 1) on glucose tolerance test (GTT) in fed, fasted, and insulin-resistant rats. In oral GTT, intraperitoneal GTT, and intravenous GTT, GPR40 receptor agonist improved glucose tolerance, which was associated with increase in plasma insulin level. Interestingly, in GTTs, the rise in insulin levels in agonist-treated group was directly proportional to the rate of rise and peak levels of glucose in control group. Although glibenclamide, a widely used insulin secretagogue, improved glucose tolerance in all GTTs, it did not display insulin release in intraperitoneal GTT or intravenous GTT. In the absence of glucose load, GPR40 receptor agonist did not significantly change the plasma insulin concentration, but did decrease the plasma glucose concentration. Fasted rats exhibited impaired glucose-stimulated insulin secretion (GSIS) as compared with fed rats. Compound 1 potentiated GSIS in fasted state but failed to do so in fed state. Suspecting differential pharmacokinetics, a detailed pharmacokinetic evaluation was performed, which revealed the low plasma concentration of compound 1 in fed state. Consequently, we examined the absorption profile of compound 1 at higher doses in fed state; and at a dose at which its absorption was comparable with that in fasted state, we observed significant potentiation of GSIS. Chronic high-fructose (60%) diet feeding resulted in impaired glucose tolerance, which was improved by GPR40 receptor agonist. Therefore, our results demonstrate for the first time that acute GPR40 receptor activation leads to potentiation of GSIS in vivo and improves glucose tolerance even in insulin-resistant condition in rats. Taken together, these results suggest that GPR40 receptor agonists could be potential therapeutic alternatives to sulfonylureas.


Subject(s)
Fatty Acids, Nonesterified/pharmacology , Glucose/pharmacology , Insulin/metabolism , Receptors, G-Protein-Coupled/agonists , Animals , Blood Glucose/drug effects , Blood Glucose/metabolism , Diabetes Mellitus, Type 2/blood , Eating , Fasting , Glucose Tolerance Test , Insulin Secretion , Male , Rats , Rats, Sprague-Dawley
6.
Bioorg Med Chem ; 11(18): 4059-67, 2003 Sep 01.
Article in English | MEDLINE | ID: mdl-12927868

ABSTRACT

A number of 2,4-thiazolidinedione derivatives of -phenyl substituted cinnamic acid were synthesized and studied for their PPAR agonist activity. The E-isomer of cinnamic acid, 11, showed moderate PPAR transactivation. The corresponding Z-isomer, 23, and double bond reduced derivative, 15, were found to be much less potent. Although the E-isomer showed a moderate PPAR gamma transactivation, it demonstrated a strong glucose-lowering effect in a genetic rodent model of diabetes. Results of pharmacokinetic, metabolism and permeability studies are consistent with 11 being an active prodrug with an active metabolite, 14, that has similar glucose lowering and PPAR gamma agonist properties.


Subject(s)
Cinnamates/chemistry , Hypoglycemic Agents/chemical synthesis , Thiazolidinediones/chemical synthesis , Animals , Blood Glucose/analysis , Blood Glucose/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Disease Models, Animal , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Isomerism , Mice , Phenylpropionates/chemical synthesis , Phenylpropionates/pharmacology , Prodrugs/chemical synthesis , Prodrugs/pharmacology , Receptors, Cytoplasmic and Nuclear/agonists , Receptors, Cytoplasmic and Nuclear/biosynthesis , Structure-Activity Relationship , Thiazolidinediones/pharmacology , Thiazolidinediones/therapeutic use , Transcription Factors/agonists , Transcription Factors/biosynthesis
7.
Metabolism ; 52(8): 1012-8, 2003 Aug.
Article in English | MEDLINE | ID: mdl-12898466

ABSTRACT

Agonists of the nuclear receptor peroxisome proliferator-activated receptor gamma (PPAR gamma) are pharmacologically active antihyperglycemic agents that act by increasing peripheral tissue sensitivity to insulin. Many of these agonists have antihyperglycemic activity that is directly proportional to their ability to bind and activate PPAR gamma; however, recent data bring this relationship into question. In this report we describe a new PPAR gamma agonist, CLX-0921, that is derived from a natural product. This thiazolidinedione (TZD) has a spectrum of activity that differs from commercially available TZDs. It is a weak activator of PPAR gamma (EC(50) of 0.284 micromol/L) compared to rosiglitazone (EC(50) 0.009 micromol/L). Despite this difference, the drug maintains potent glucose uptake activity in vitro and glucose-lowering activity in vivo that is equipotent to that of rosiglitazone. Moreover, CLX-0921 showed a 10-fold reduction in in vitro adipogenic potential compared to rosiglitazone. CLX-0921 also increases glycogen synthesis, an activity not typically associated with rosiglitazone or pioglitazone. Thus CLX-0921 appears to have a distinct spectrum of activity relative to other TZDs.


Subject(s)
Adipose Tissue/growth & development , Hypoglycemic Agents/pharmacology , Receptors, Cytoplasmic and Nuclear/agonists , Thiazoles/pharmacology , Thiazolidinediones , Transcription Factors/agonists , 3T3 Cells , Adipocytes/drug effects , Adipocytes/metabolism , Adipose Tissue/drug effects , Animals , Blood Glucose/metabolism , Cells, Cultured , Diabetes Mellitus/genetics , Diabetes Mellitus/metabolism , Dose-Response Relationship, Drug , Glycogen/biosynthesis , Humans , Insulin/blood , Mice , Mice, Inbred C57BL , Mice, Obese , Radioligand Assay , Rats , Rats, Zucker , Rosiglitazone , Transcriptional Activation , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...