Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Eur J Med Res ; 29(1): 66, 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38245767

ABSTRACT

BACKGROUND: Adolescent idiopathic scoliosis (AIS) is a common structural deformity of the spine affecting adolescent individuals globally. The disorder is polygenic and is accompanied by the association of various genetic loci. Genetic studies in Chinese and Japanese populations have shown the association of genetic variants of SOX9 with AIS curve severity. However, no genetic study evaluating the association of SRY-Box Transcription Factor 9 (SOX9) variants with AIS predisposition has been conducted in any Indian population. Thus, we aimed to investigate the association of the genetic variants of the SOX9 along with 0.88 Mb upstream region with AIS susceptibility in the population of Northwest India. METHODS: In total, 113 AIS cases and 500 non-AIS controls were recruited from the population of Northwest India in the study and screened for 155 genetic variants across the SOX9 gene and 0.88 Mb upstream region of the gene using Global Screening Array-24 v3.0 chip (Illumina). The statistical significance of the Bonferroni threshold was set at 0.000322. RESULT: The results showed the association of 11 newly identified variants; rs9302936, rs7210997, rs77736349, rs12940821, rs9302937, rs77447012, rs8071904, rs74898711, rs9900249, rs2430514, and rs1042667 with the AIS susceptibility in the studied population. Only one variant, rs2430514, was inversely associated with AIS in the population, while the ten variants were associated with the AIS risk. Moreover, 47 variants clustered in the gene desert region of the SOX9 gene were associated at a p-value ≤ 0.05. CONCLUSION: The present study is the first to demonstrate the association of SOX9 enhancer locus variants with AIS in any South Asian Indian population. The results are interesting as rs1042667, a 3' untranslated region (UTR) variant in the exon 3 and upstream variants of the SOX9 gene, were associated with AIS susceptibility in the Northwest Indian population. This provides evidence that the variants in the enhancer region of SOX9 might regulate its gene expression, thus leading to AIS pathology and might act as an important gene for AIS susceptibility.


Subject(s)
Scoliosis , Humans , Adolescent , Scoliosis/genetics , Genetic Predisposition to Disease/genetics , Polymorphism, Single Nucleotide/genetics , Case-Control Studies , Asian People/genetics , Genotype , SOX9 Transcription Factor/genetics
2.
Sci Rep ; 13(1): 7852, 2023 05 15.
Article in English | MEDLINE | ID: mdl-37188759

ABSTRACT

Neurofibromatosis type 1 (NF1) is a multisystemic hereditary disorder associated with an increased risk of benign and malignant tumor formation predominantly on the skin, bone, and peripheral nervous system. It has been reported that out of all the NF1 cases, more than 95% cases develop the disease due to heterozygous loss-of-function variants in Neurofibromin (NF1) gene. However, identification of NF1 causative variants by presently recommended method of gene-targeted Sanger sequencing is challenging and cost-intensive due to the large size of the NF1gene with 60 exons spanning about 350 kb. Further, conducting the genetic studies is difficult in low resource regions and among families with the limited financial capabilities, restricting them from availing diagnostic as well as proper disease management measures. Here, we studied a three-generation family from Jammu and Kashmir state in India, with multiple affected family members showing clinical indications of NF1. We combinedly used two applications, Whole Exome Sequencing (WES) and Sanger sequencing, for this study and discovered a nonsense variant NM_000267.3:c.2041C>T (NP_000258.1:p.Arg681Ter*) in exon 18 of NF1 gene in a cost effective manner. In silico analyses further substantiated the pathogenicity of this novel variant. The study also emphasized on the role of Next Generation Sequencing (NGS) as a cost-effective method for the discovery of pathogenic variants in disorders with known phenotypes found in large sized candidate genes. The current study is the first study based on the genetic characterization of NF1 from Jammu and Kashmir-India, highlighting the importance of the described methodology adopted for the identification and understanding of the disease in low resource region. The early diagnosis of genetic disorders would open the door to appropriate genetic counseling, reducing the disease burden in the affected families and the general population at large.


Subject(s)
Neurofibromatosis 1 , Humans , Neurofibromatosis 1/diagnosis , Neurofibromatosis 1/genetics , Neurofibromatosis 1/pathology , Mutation , Exome Sequencing , Cost-Benefit Analysis , Pedigree , India
3.
J Diabetes Metab Disord ; 21(1): 1095-1104, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35673448

ABSTRACT

The metabolic syndrome is a cluster of heritable and related traits which has been associated with a range of pathophysiological factors including dyslipidaemia, abdominal obesity, increased fasting plasma glucose (FPG) and hypertension. The documented genetic basis of the metabolic syndrome include several chromosomal positions, numerous candidate gene-associated polymorphisms, different genetic variants, which are linked to the syndrome either as a trait or entities mainly linked to metabolic process. Additionally, the latest findings related to the contribution of epigenetic mechanisms, microRNAs, sporadic variants, non-coding RNAs, and assessing the role of genes in molecular systems has enhanced our understanding of the syndrome. Considerable work has been done to understand the underlying disease mechanisms by elucidating its genetic etiology. Nonetheless, a common shared genetic cause has not been established to clarify the coexistence of their components and further investigation is required. While mostly neglected and rarely known, hereditary predisposition needs to be studied, including with the current defective phenotypic condition descriptions. Metabolic syndrome is a multi-faceted characteristic with abundant properties and the condition can arise from interactions between environmental variables such as physical inactivity, caloric obesity and genetic susceptibility. Although there is support for genetic determinants from family and twin research, there is still no recognised genomic DNA marker for genetic association and linkages with quite a long way off potential for clinical application. In the present review efforts have been made to through light on the various genetic determinants with large effects that underlie with the association of these traits to this syndrome. The heterogeneity and multifactorial heritability of MetS, however, has been a challenge towards understanding the factors underlying the association of these traits.

4.
Am J Transl Res ; 14(2): 1100-1106, 2022.
Article in English | MEDLINE | ID: mdl-35273713

ABSTRACT

AIS is a heterogeneous 3D spinal deformity with Cobb angle ≥10°. It affects children in the age group of 10-16 years globally with 2-3% prevalence and significant female predominance. The exact etiology of AIS is not known however, it is supposed to be associated with factors such as anthropometric, metabolic, neuromuscular abnormalities and genetics. OBJECTIVES: To determine the prevalence of AIS and association of anthropometric factors with AIS in the studied population group. METHODOLOGY: Scoliosis screening of 9,500 individuals was carried out at different educational institutions of Jammu region in Jammu and Kashmir, India using a scoliosis-meter. The subjects were later examined radiologically. RESULTS: In population of the region, AIS was most prevalent among all types of scoliosis with overall prevalence of 0.61%. The prevalence was observed to be lower in females (0.31%) than males (0.88%). Based on angle of trunk rotation (ATR), lumbar curves were more prevalent than thoracic curves. Average Cobb angle in males and females were 24.9° and 22.6°, respectively. BMI showed significant association with AIS in the age group of 12-16 years (P value =0.028). Furthermore, height was significantly associated with AIS in the overall screened population (P-value =0.029). CONCLUSIONS: The AIS patients in the Jammu region of India have unique clinical features. In contrast to the global prevalence data, the prevalence of AIS in females in the region was less in comparison to males. Based on epidemiological literature and our findings, we hypothesized that genetic factors might be a major contributor in the AIS pathogenesis along with other confounding factors such as height, BMI, ethnicity, etc.

5.
J Cancer Res Ther ; 18(4): 873-879, 2022.
Article in English | MEDLINE | ID: mdl-33533734

ABSTRACT

Gastric Carcinoma (GC) is one of the most common malignancies, which accounts for 6.8% of total cancer population worldwide. In India, the northeastern region has the highest gastric cancer incidence, and the Kashmir Valley has a very high incidence of gastric cancer as compared to other parts of Northern India. It exceeds 40% of total cancers with an incidence rate of 3-6-fold higher than other metro cities of India. Gastric cancer is a heterogeneous disease where most of the cases are sporadic, and <15% are due to obvious familial clustering. The heterogeneous nature of the disease can be associated with differences in genetic makeup of an individual. A better understanding of genetic predisposition toward GC will be helpful in promoting personalized medicine. The aim of this review is to analyze the development and progression of GC and to explore the genetic perspectives of the disease with special emphasis on Jammu and Kashmir, India.


Subject(s)
Stomach Neoplasms , Genetic Predisposition to Disease , Humans , Incidence , India/epidemiology , Stomach Neoplasms/epidemiology , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology
6.
Gene ; 767: 145178, 2021 Jan 30.
Article in English | MEDLINE | ID: mdl-33007378

ABSTRACT

Telomeres are highly repetitive regions capping the chromosomes and composed of multiple units of hexa-nucleotides, TTAGGG, making their quantification difficult. Most of the methods developed to estimate telomeres are extensively cumbersome or expensive. The quantitative polymerase chain reaction (qPCR) based assay is relatively easy and cheaper method that applies SyBr Green dye chemistry to measure telomere length. SyBr Green dye fluoresces after intercalation into the double stranded DNA (dsDNA), thus detection of unspecific products has been a limitation as it may affect quantitation of telomeres. To overcome this limitation of SyBr Green dye, we developed a dual labeled fluorescence probe based quantitative polymerase chain reaction (qPCR) to measure the telomere length. This highly efficient, yet cost effective and easy method, utilizes a probe that targets primarily the telomeric DNA and this increases accuracy of an existing qPCR method.


Subject(s)
Polymerase Chain Reaction/methods , Telomere/genetics , Telomere/metabolism , Benzothiazoles , DNA/genetics , Diamines , Fluorescence , Fluorescent Dyes/chemistry , Fluorescent Dyes/metabolism , Humans , In Situ Hybridization, Fluorescence/methods , Organic Chemicals/chemistry , Quinolines , Repetitive Sequences, Nucleic Acid/genetics , Telomere Homeostasis/genetics
7.
J Cancer Res Ther ; 16(Supplement): S156-S159, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32880595

ABSTRACT

BACKGROUND: Leucine-rich repeat and fibronectin type 2 gene (LRFN2) variant rs2494938 has recently been found associated with esophageal cancer in a genome-wide association study in an Asian population. However, this association has not been replicated in any Indian population despite high incidence of the disease. MATERIALS AND METHODS: In the present case-control study, 166 cases and 459 controls were included. Taqman assay technique using real-time PCR was employed to investigate the association of the variant with esophageal cancer in the population of Jammu and Kashmir (J&K). The Hardy-Weinberg equilibrium for rs2494938 was assessed using the Chi-square test. The allele- and genotype-specific risk was estimated by odds ratio (OR) with 95% confidence interval (CI). RESULTS: Variant rs2494938 was observed to be significantly associated with esophageal cancer with an allelic OR of 1.59 (1.23-2.04 at 95% CI, P = 0.0003). CONCLUSION: The study highlights LRFN2 as a candidate gene for esophageal cancer susceptibility in the population of J&K and calls for a detailed study with a large sample size and involving more ethnic groups of India.


Subject(s)
Asian People/genetics , Biomarkers, Tumor/genetics , Esophageal Neoplasms/epidemiology , Genetic Predisposition to Disease , Membrane Glycoproteins/genetics , Nerve Tissue Proteins/genetics , Polymorphism, Single Nucleotide , Case-Control Studies , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Female , Follow-Up Studies , Genome-Wide Association Study , Humans , India/epidemiology , Male , Middle Aged , Prognosis , Survival Rate
8.
Front Genet ; 11: 415, 2020.
Article in English | MEDLINE | ID: mdl-32425985

ABSTRACT

Rare diseases (RDs) are the clinical conditions affecting a few percentage of individuals in a general population compared to other diseases. Limited clinical information and a lack of reliable epidemiological data make their timely diagnosis and therapeutic management difficult. Emerging Next-Generation DNA Sequencing technologies have enhanced our horizons on patho-physiological understanding of many of the RDs and ushered us into an era of diagnostic and therapeutic research related to this ignored health challenge. Unfortunately, relevant research is meager in developing countries which lack a reliable estimate of the exact burden of most of the RDs. India is to be considered as the "Pandora's Box of genetic disorders." Owing to its huge population heterogeneity and high inbreeding or endogamy rates, a higher burden of rare recessive genetic diseases is expected and supported by the literature findings that endogamy is highly detrimental to health as it enhances the degree of homozygosity of recessive alleles in the general population. The population of a low resource region Jammu and Kashmir (J&K) - India, is highly inbred. Some of its population groups variably practice consanguinity. In context with the region's typical geographical topography, highly inbred population structure and unique but heterogeneous gene pool, a huge burden of known and uncharacterized genetic disorders is expected. Unfortunately, many suspected cases of genetic disorders remain undiagnosed or misdiagnosed due to lack of appropriate clinical as well as diagnostic resources in the region, causing patients to face a huge psycho-socio-economic crisis and many a time suffer life-long with their ailment. In this review, the major challenges associated with RDs are highlighted in general and an account on the methods that can be adopted for conducting fruitful molecular genetic studies in genetically vulnerable and low resource regions is also provided, with an example of a region like J&K - India.

9.
Sci Rep ; 10(1): 6444, 2020 04 15.
Article in English | MEDLINE | ID: mdl-32296102

ABSTRACT

Telomere length attrition has been implicated in various complex disorders including Type 2 Diabetes (T2D). However, very few candidate gene association studies have been carried out worldwide targeting telomere maintenance genes. In the present study, variants in various critical telomere maintenance pathway genes for T2D susceptibility in Northwest Indian population were explored. With case-control candidate gene association study design, twelve variants from seven telomere maintenance genes were evaluated. Amongst these five variants, rs9419958 (OBFC1), rs4783704 (TERF2), rs16847897 (TERC/LRRC31), rs10936599 (TERC/MYNN), and rs74019828 (CSNK2A2) showed significant association with T2D (at p-value ≤ 0.003, threshold set after Bonferroni correction) in the studied population. In silico analyses of these variants indicated interesting functional roles that warrant experimental validations. Findings showed that variants in telomere maintenance genes are associated with pathogenesis of T2D in Northwest Indian population. We anticipate further, such candidate gene association studies in other Indian populations and worldwide would contribute in understanding the missing heritability of T2D.


Subject(s)
Diabetes Mellitus, Type 2/genetics , Genetic Predisposition to Disease , Telomere Homeostasis , Telomere-Binding Proteins/genetics , Telomere/metabolism , Aged , Case-Control Studies , Computational Biology , Diabetes Mellitus, Type 2/epidemiology , Female , Genome-Wide Association Study , Humans , India/epidemiology , Male , Middle Aged , Polymorphism, Single Nucleotide , Telomere-Binding Proteins/metabolism
10.
Sci Rep ; 10(1): 7017, 2020 Apr 27.
Article in English | MEDLINE | ID: mdl-32341367

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

11.
Sci Rep ; 10(1): 2904, 2020 02 19.
Article in English | MEDLINE | ID: mdl-32076038

ABSTRACT

Adiponectin is a prime determinant of the status of insulin resistance. Association studies between adiponectin (ADIPOQ) gene single nucleotide polymorphisms (SNPs) and metabolic diseases have been reported earlier. However, results are ambiguous due to apparent contradictions. Hence, we investigated (1) the association between ADIPOQ SNPs: -11377C/G, +10211T/G, +45T/G and +276G/T for the risk towards type 2 diabetes (T2D) and, (2) genotype-phenotype association of these SNPs with various biochemical parameters in two cohorts. Genomic DNA of diabetic patients and controls from Gujarat and, Jammu and Kashmir (J&K) were genotyped using PCR-RFLP, TaqMan assay and MassArray. Transcript levels of ADIPOQ were assessed in visceral adipose tissue samples, and plasma adiponectin levels were estimated by qPCR and ELISA respectively. Results suggest: (i) reduced HMW adiponectin/total adiponectin ratio in Gujarat patients and its association with +10211T/G and +276G/T, and reduced ADIPOQ transcript levels in T2D, (ii) association of the above SNPs with increased FBG, BMI, TG, TC in Gujarat patients and (iii) increased GGTG haplotype in obese patients of Gujarat population and, (iv) association of -11377C/G with T2D in J&K population. Reduced HMW adiponectin, in the backdrop of obesity and ADIPOQ genetic variants might alter metabolic profile posing risk towards T2D.


Subject(s)
Adiponectin/genetics , Diabetes Mellitus, Type 2/genetics , Genetic Association Studies , Genetic Loci , Genetic Predisposition to Disease , Haplotypes/genetics , Obesity/genetics , Adiponectin/blood , Adult , Aged , Case-Control Studies , Diabetes Mellitus, Type 2/blood , Female , Gene Frequency/genetics , Humans , India , Linkage Disequilibrium/genetics , Male , Middle Aged , Molecular Weight , Obesity/blood , Polymorphism, Single Nucleotide/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism
12.
Genet Med ; 22(1): 189-198, 2020 01.
Article in English | MEDLINE | ID: mdl-31395945

ABSTRACT

PURPOSE: Preaxial polydactyly (PPD) is a common congenital hand malformation classified into four subtypes (PPD I-IV). Variants in the zone of polarizing activity regulatory sequence (ZRS) within intron 5 of the LMBR1 gene are linked to most PPD types. However, the genes responsible for PPD I and the underlying mechanisms are unknown. METHODS: A rare large four-generation family with isolated PPD I was subjected to genome-wide genotyping and sequence analysis. In vitro and in vivo functional studies were performed in Caco-2 cells, 293T cells, and a knockin transgenic mouse model. RESULTS: A novel g.101779T>A (reference sequence: NG_009240.2; position 446 of the ZRS) variant segregates with all PPD I-affected individuals. The knockin mouse with this ZRS variant exhibited PPD I phenotype accompanying ectopic and excess expression of Shh. We confirmed that HnRNP K can bind the ZRS and SHH promoters. The ZRS mutant enhanced the binding affinity for HnRNP K and upregulated SHH expression. CONCLUSION: Our results identify the first PPD I disease-causing variant. The variant leading to PPD I may be associated with enhancing SHH expression mediated by HnRNP K. This study adds to the ZRS-associated syndromes classification system for PPD and clarifies the underlying molecular mechanisms.


Subject(s)
Hedgehog Proteins/genetics , Heterogeneous-Nuclear Ribonucleoprotein K/metabolism , Limb Buds/growth & development , Membrane Proteins/genetics , Polydactyly/genetics , Polymorphism, Single Nucleotide , Thumb/abnormalities , Up-Regulation , Animals , Caco-2 Cells , Disease Models, Animal , Female , Gene Knock-In Techniques , HEK293 Cells , Humans , Introns , Limb Buds/metabolism , Limb Buds/pathology , Male , Mice , Mice, Transgenic , Pedigree , Polydactyly/metabolism
13.
BMC Plant Biol ; 19(1): 594, 2019 Dec 30.
Article in English | MEDLINE | ID: mdl-31888485

ABSTRACT

BACKGROUND: Narrow genetic base, complex allo-tetraploid genome and presence of repetitive elements have led the discovery of single nucleotide polymorphisms (SNPs) in Brassica juncea (AABB; 2n = 4x = 36) at a slower pace. Double digest RAD (ddRAD) - a genome complexity reduction technique followed by NGS was used to generate a total of 23 million paired-end reads from three genotypes each of Indian (Pusa Tarak, RSPR-01 and Urvashi) and Exotic (Donskaja IV, Zem 1 and EC287711) genepools. RESULTS: Sequence data analysis led to the identification of 10,399 SNPs in six genotypes at a read depth of 10x coverage among the genotypes of two genepools. A total of 44 hyper-variable regions (nucleotide variation hotspots) were also found in the genome, of which 93% were found to be a part of coding genes/regions. The functionality of the identified SNPs was estimated by genotyping a subset of SNPs on MassARRAY® platform among a diverse set of B. juncea genotypes. SNP genotyping-based genetic diversity and population studies placed the genotypes into two distinct clusters based mostly on the place of origin. The genotypes were also characterized for six morphological traits, analysis of which revealed a significant difference in the mean values between Indian and Exotic genepools for six traits. The association analysis for six traits identified a total of 45 significant marker-trait associations on 11 chromosomes of A- and B- group of progenitor genomes. CONCLUSIONS: Despite narrow diversity, the ddRAD sequencing was able to identify large number of nucleotide polymorphisms between the two genepools. Association analysis led to the identification of common SNPs/genomic regions associated between flowering and maturity traits, thereby underscoring the possible role of common chromosomal regions-harboring genes controlling flowering and maturity in Brassica juncea.


Subject(s)
Computational Biology/methods , Genome, Plant , Genome-Wide Association Study , Genotyping Techniques/methods , Mustard Plant/genetics , Polymorphism, Single Nucleotide , Sequence Analysis, DNA/methods
14.
Mitochondrion ; 46: 209-213, 2019 05.
Article in English | MEDLINE | ID: mdl-29929013

ABSTRACT

Leigh Syndrome (LS) is a rare, hereditary progressive neurodegenerative disorder of infancy or early childhood associated with a highly variable clinical presentation even among siblings. Further, genetic heterogeneity makes its diagnosis complicated. Its causative genetic variations are notified in some of the mitochondrial and nuclear genes. Here, we report an atypical case of LS in a 9-year-old boy associated with a novel variation in MT-ATP6 gene. The atypical findings were Bilateral Basal Ganglia Calcification (BGC) and late survival age in the patient. Analyses of the Whole Mitochondrial Genome Sequencing (WMGS) results of the recruited patient and his mother at different read coverage, first at 100× and later repeated at 500×, revealed a novel disease-associated variation in the already known disease-associated MT-ATP6 gene. In conclusion, the present study indicates amalgamation of both neuro-imaging and Next Generation Sequencing (NGS) Technologies aiding the proper diagnosis of LS in atypical cases.


Subject(s)
Basal Ganglia/pathology , Calcinosis , Leigh Disease/diagnosis , Leigh Disease/pathology , Mitochondrial Proton-Translocating ATPases/genetics , Polymorphism, Single Nucleotide , Child , Genome, Mitochondrial , Humans , Leigh Disease/genetics , Male , Sequence Analysis, DNA
15.
Sci Rep ; 8(1): 851, 2018 01 16.
Article in English | MEDLINE | ID: mdl-29339819

ABSTRACT

Jammu and Kashmir (J&K), the Northern most State of India, has been under-represented or altogether absent in most of the phylogenetic studies carried out in literature, despite its strategic location in the Himalayan region. Nonetheless, this region may have acted as a corridor to various migrations to and from mainland India, Eurasia or northeast Asia. The belief goes that most of the migrations post-late-Pleistocene were mainly male dominated, primarily associated with population invasions, where female migration may thus have been limited. To evaluate female-centered migration patterns in the region, we sequenced 83 complete mitochondrial genomes of unrelated individuals belonging to different ethnic groups from the state. We observed a high diversity in the studied maternal lineages, identifying 19 new maternal sub-haplogroups (HGs). High maternal diversity and our phylogenetic analyses suggest that the migrations post-Pleistocene were not strictly paternal, as described in the literature. These preliminary observations highlight the need to carry out an extensive study of the endogamous populations of the region to unravel many facts and find links in the peopling of India.


Subject(s)
Human Migration , DNA, Mitochondrial/chemistry , DNA, Mitochondrial/classification , DNA, Mitochondrial/metabolism , Female , Genetic Variation , Haplotypes , Humans , India , Male , Mitochondria/genetics , Phylogeny
16.
Sci Rep ; 7(1): 4834, 2017 07 05.
Article in English | MEDLINE | ID: mdl-28680084

ABSTRACT

Pantothenate kinase-associated neurodegeneration is a rare hereditary neurodegenerative disorder associated with nucleotide variation(s) in mitochondrial human Pantothenate kinase 2 (hPanK2) protein encoding PANK2 gene, and is characterized by symptoms of extra-pyramidal dysfunction and accumulation of non-heme iron predominantly in the basal ganglia of the brain. In this study, we describe a familial case of PKAN from the State of Jammu and Kashmir (J&K), India based on the clinical findings and genetic screening of two affected siblings born to consanguineous normal parents. The patients present with early-onset, progressive extrapyramidal dysfunction, and brain Magnetic Resonance imaging (MRI) suggestive of symmetrical iron deposition in the globus pallidi. Screening the PANK2 gene in the patients as well as their unaffected family members revealed a functional single nucleotide variation, perfectly segregating in the patient's family in an autosomal recessive mode of inheritance. We also provide the results of in-silico analyses, predicting the functional consequence of the identified PANK2 variant.


Subject(s)
Mutation, Missense , Pantothenate Kinase-Associated Neurodegeneration/genetics , Phosphotransferases (Alcohol Group Acceptor)/genetics , Adult , Age of Onset , Catalytic Domain , Computer Simulation , Consanguinity , Female , Genetic Predisposition to Disease , Humans , India , Magnetic Resonance Imaging , Male , Pantothenate Kinase-Associated Neurodegeneration/diagnostic imaging , Pedigree , Phosphotransferases (Alcohol Group Acceptor)/chemistry , Sequence Analysis, DNA/methods , Young Adult
17.
Diabetes Res Clin Pract ; 126: 160-163, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28258026

ABSTRACT

OBJECTIVE: To replicate the association of newly identified variants of TMEM163 (transmembrane protein 163) and COBLL1 (cordon-bleu protein-like 1) with type 2 diabetes (T2D) in Northwest Indian population. METHODS: We performed a replication study of variants rs998451 and rs6723108 of gene TMEM163 and rs7607980 of gene COBLL1. The variations were genotyped using Taqman allele discrimination assay in 1209 Northwest Indians (651 T2D cases and 558 controls). The association of each SNP with the disease was evaluated using logistic regression. RESULTS: All the three SNPs examined in this study did not show any significant association with T2D. For rs998451 and rs6723108 of TMEM163 the observed odds ratios were 0.71 with a 95% CI of 0.28-1.84 (p=0.484) and 1.80 with a 95% CI of 0.74-4.40 (p=0.196), respectively. For rs7607980 the estimated odds ratio was 1.01 with 95% CI of 0.70-1.44 (p=0.946). CONCLUSION: We conclude that lack of association could be because of population structure of Indian Population that is conglomeration of various ethnic groups. For a conclusive association study of T2D in India, it is critical that such studies are carried out among endogamous ethnic groups rather than conventional practice of pooling samples based on Geographical/regional or linguist affiliations like Asian Indian, North or South Indian etc.


Subject(s)
Diabetes Mellitus, Type 2/genetics , Membrane Proteins/genetics , Transcription Factors/genetics , Alleles , Asian People/genetics , Case-Control Studies , Diabetes Mellitus, Type 2/ethnology , Ethnicity , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Genotype , Humans , India , Logistic Models , Male , Middle Aged , Polymorphism, Single Nucleotide
18.
Diabetes Res Clin Pract ; 122: 92-100, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27816684

ABSTRACT

Type 2 Diabetes Mellitus (T2DM), a multifactorial complex disorder, is emerging as a major cause of morbidity, mortality and socio-economic burden across the world. Despite huge efforts in understanding genetics of T2DM, only ∼10% of the genetic factors have been identified so far. Telomere attrition, a natural phenomenon has recently emerged in understanding the pathophysiology of T2DM. It has been indicated that Telomeres and associated pathways might be the critical components in the disease etiology, though the mechanism(s) involved are not clear. Recent Genome Wide (GWAS) and Candidate Gene Case-Control Association Studies have also indicated an association of Telomere and associated pathways related genes with T2DM. Single Nucleotide Polymorphisms (SNPs) in the telomere maintenance genes: TERT, TERC, TNKS, CSNK2A2, TEP1, ACD, TRF1 and TRF2, have shown strong association with telomere attrition in T2DM and its pathophysiology, in these studies. However, the assessment has been made within limited ethnicities (Caucasians, Han Chinese cohort and Punjabi Sikhs from South Asia), warranting the study of such associations in different ethnic groups. Here, we propose the possible mechanisms, in the light of existing knowledge, to understand the association of T2DM with telomeres and associated pathways.


Subject(s)
Diabetes Mellitus, Type 2/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Telomere/physiology , Diabetes Mellitus, Type 2/metabolism , Humans
19.
Rev Diabet Stud ; 13(1): 17-34, 2016.
Article in English | MEDLINE | ID: mdl-27563694

ABSTRACT

Type 2 diabetes (T2D) is a chronic metabolic disease which shows an exponential increase in all parts of the world. However, the disease is controllable by early detection and modified lifestyle. A series of factors have been associated with the pathogenesis of diabetes, and genes are considered to play a critical role. The individual risk of developing T2D is determined by an altered genetic background of the en-zymes involved in several metabolism-related biological mechanisms, including glucose homeostasis, insulin metab-olism, the glucose and ion transporters involved in glucose uptake, transcription factors, signaling intermediates of insulin signaling pathways, insulin production and secretion, pancreatic tissue development, and apoptosis. However, many candidate genes have shown heterogeneity of associations with the disease in different populations. A possible approach to resolving this complexity and under-standing genetic heterogeneity is to delineate the physiological phenotypes one by one as studying them in combination may cause discrepancies in association studies. A systems biology approach involving regulatory proteins, transcription factors, and microRNAs is one way to understand and identify key factors in complex diseases such as T2D. Our earlier studies have screened more than 100 single nucleotide polymorphisms (SNPs) belonging to more than 60 globally known T2D candidate genes in the Indian population. We observed that genes invariably involved in the activity of pancreatic ß-cells provide susceptibility to type 2 diabetes (T2D). Encouraged by these results, we attempted to delineate in this review one of the commonest physiological phenotypes in T2D, namely impaired insulin secretion, as the cause of hyperglycemia. This review is also intended to explain the genetic basis of the pathophysiology of insulin secretion in the context of variations in the SIRT1 gene, a major switch that modulates insulin secretion, and a set of other genes such as HHEX, PGC-α, TCF7L2, UCP2, and ND3 which were found to be in association with T2D. The review aims to look at the genotypic and transcriptional regulatory relationships with the disease phenotype.


Subject(s)
Diabetes Mellitus, Type 2/genetics , Gene Regulatory Networks , Genetic Predisposition to Disease , Insulin Resistance/genetics , Insulin/metabolism , Phenotype , Sirtuin 1/genetics , Diabetes Mellitus, Type 2/metabolism , Genotype , Humans , Insulin Secretion , Polymorphism, Single Nucleotide
20.
Sci Rep ; 6: 27684, 2016 06 13.
Article in English | MEDLINE | ID: mdl-27291587

ABSTRACT

We report identification and genetic characterization of a rare skeletal disorder that remained unidentified for decades in a village of Jammu and Kashmir, India. The population residing in this region is highly consanguineous and a lack of understanding of the disorder has hindered clinical management and genetic counseling for the many affected individuals in the region. We collected familial information and identified two large extended multiplex pedigrees displaying apparent autosomal recessive inheritance of an uncharacterized skeletal dysplasia. Whole exome sequencing (WES) in members of one pedigree revealed a rare mutation in WISP3:c.156C > A (NP_003871.1:p.Cys52Ter), that perfectly segregated with the disease in the family. To our surprise, Sanger sequencing the WISP3 gene in the second family identified a distinct, novel splice site mutation c.643 + 1G > A, that perfectly segregated with the disease. Combining our next generation sequencing data with careful clinical documentation (familial histories, genetic data, clinical and radiological findings), we have diagnosed the families with Progressive Pseudorheumatoid Dysplasia (PPD). Our results underscore the utility of WES in arriving at definitive diagnoses for rare skeletal dysplasias. This genetic characterization will aid in genetic counseling and management, critically required to curb this rare disorder in the families.


Subject(s)
CCN Intercellular Signaling Proteins/genetics , Exome , Joint Diseases/congenital , Adult , Child , Consanguinity , Female , Genes, Recessive , High-Throughput Nucleotide Sequencing , Humans , India , Joint Diseases/ethnology , Joint Diseases/genetics , Male , Middle Aged , Mutation , Pedigree , Phenotype , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...