Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Stress Biol ; 4(1): 33, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38981936

ABSTRACT

Global crop production is severely affected by environmental factors such as drought, salinity, cold, flood etc. Among these stresses, drought is one of the major abiotic stresses reducing crop productivity. It is expected that drought conditions will further increase because of the increasing global temperature. In general, viruses are seen as a pathogen affecting the crop productivity. However, several researches are showing that viruses can induce drought tolerance in plants. This review explores the mechanisms underlying the interplay between viral infections and the drought response mechanisms in plants. We tried to address the molecular pathways and physiological changes induced by viruses that confer drought tolerance, including alterations in hormone signaling, antioxidant defenses, scavenging the reactive oxygen species, role of RNA silencing and miRNA pathway, change in the expression of several genes including heat shock proteins, cellulose synthase etc. Furthermore, we discuss various viruses implicated in providing drought tolerance and examine the range of plant species exhibiting this phenomenon. By applying current knowledge and identifying gaps in understanding, this review aims to provide valuable insights into the complex dynamics of virus-induced drought tolerance in plants, paving the way for future research directions and practical applications in sustainable agriculture.

2.
Langmuir ; 40(1): 504-518, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38126298

ABSTRACT

Synthetic cationic lipids have garnered significant attention as promising candidates for gene/DNA transfection in therapeutic applications. The phase behavior of the vesicles formed by these lipids is intriguing, revealing intricate connections to the structure and dynamics of the membrane. These phenomena emerge from the complex interplay between hydrophobic and electrostatic interactions of the lipids. In this study, we explore the impact of an ionic liquid-based surfactant, 1-decyl-3-methylimidazolium bromide (DMIM[Br]), on the structural, dynamical, and phase behavior of cationic dihexadecyldimethylammonium bromide (DHDAB) vesicles. Our investigations indicate that the addition of DMIM[Br] increases the vesicle size while thinning the membrane. Further, DMIM[Br] also induces substantial changes in the membrane phase behavior. At 10 and 25 mol %, DMIM[Br] eliminates the pre-transition from coagel to intermediate crystalline (IC) phase and decreases the onset temperature of the main phase transition to the fluid phase. In the cooling cycle, the addition of DMIM[Br] further induces the formation of an intermediate gel phase. This behavior is reminiscent of the non-synchronous ordering observed in the DODAB membrane, a longer-chain counterpart of DHDAB. Interestingly, at 40 mol % of DMIM[Br], the formation of the intermediate gel phase is largely suppressed. Neutron scattering data provide evidence that the addition of DMIM[Br] enhances lipid mobility in coagel and fluid phases, suggesting that DMIM[Br] acts as a plasticizer, enhancing membrane fluidity across all of the phases. Our findings infer that DMIM[Br] modulates the membrane's phase behavior and fluidity, two essential ingredients for the efficient transport of cargo, by controlling the balance of electrostatic and hydrophobic interactions.

3.
Langmuir ; 39(46): 16432-16443, 2023 11 21.
Article in English | MEDLINE | ID: mdl-37948158

ABSTRACT

The lipid dynamics and phase play decisive roles in drug encapsulation and delivery to the intracellular target. Thus, understanding the dynamic and structural alterations of membranes induced by drugs is essential for targeted delivery. To this end, united-atom molecular dynamics simulations of a model bilayer, dioctadecyldimethylammonium bromide (DODAB), are performed in the absence and presence of the usual nonsteroidal anti-inflammatory drug (NSAID), aspirin, at 298, 310, and 345 K. At 298 and 310 K, the bilayers are in the interdigitated two-dimensional square phases, which become rugged in the presence of aspirin, as evident from height fluctuations. At 345 K, the bilayer is in the fluid phase in both the absence and presence of aspirin. Aspirin is preferentially located near the oppositely charged headgroup and creates void space, which leads to an increase in the interdigitation and order parameters. Although the center of mass of lipids experiences structural arrest, they reach the diffusive regime faster and have higher lateral diffusion constants in the presence of aspirin. Results are found to be consistent with recent quasi-elastic neutron scattering studies that reveal that aspirin acts as a plasticizer and enhances lateral diffusion of lipids in both ordered and fluid phases. Different relaxation time scales of the bonds along the alkyl tails of DODAB due to the multitude of lipid motions become faster upon the addition of aspirin. Our results show that aspirin insertion is most favorable at physiological temperature. Thus, the ordered, more stable, and faster DODAB bilayer can be a potential drug carrier for the protected encapsulation of aspirin, followed by targeted and controlled drug release with antibacterial activity in the future.


Subject(s)
Aspirin , Lipid Bilayers , Lipid Bilayers/chemistry , Pharmaceutical Preparations , Quaternary Ammonium Compounds/chemistry , Molecular Dynamics Simulation
4.
Chem Phys Lipids ; 256: 105336, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37586678

ABSTRACT

Ionic liquids (ILs) have been emerged as a versatile class of compounds that can be easily tuned to achieve desirable properties for various applications. The ability of ILs to interact with biomembranes has attracted significant interest, as they have been shown to modulate membrane properties in ways that may have implications for various biological processes. This review provides an overview of recent studies that have investigated the interaction between ILs and biomembranes. We discuss the effects of ILs on the physical and chemical properties of biomembranes, including changes in membrane fluidity, permeability, and stability. We also explore the mechanisms underlying the interaction of ILs with biomembranes, such as electrostatic interactions, hydrogen bonding, and van der Waals forces. Additionally, we discuss the future prospects of this field.

5.
Langmuir ; 39(27): 9396-9405, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37387122

ABSTRACT

While ionic liquids (ILs) are considered as prospective ingredients of new antimicrobial agents, it is important to understand the adverse effects of these molecules on human cells. Since cholesterol is the essential component of a human cell membrane, in the present study, the effect of an imidazolium-based IL has been investigated on the model membrane in the presence of cholesterol. The area per sphingomyelin lipid is found to reduce in the presence of the IL, which is quantified by the area-surface pressure isotherm of the lipid monolayer formed at the air-water interface. The effect is considerably diminished in the cholesterol-containing monolayer. Further, the IL is observed to decrease the rigidity of the cholesterol-free monolayer. Interestingly, the presence of cholesterol does not allow any change in this property of the layer at lower surface pressure. However, at a higher surface pressure, the IL increases the elasticity in the cholesterol-induced condensed phase of the lipid layer. The X-ray reflectivity measurement on a stack of cholesterol-free lipid bilayers proved the formation of IL-induced phase-separated domains in the matrix of a pure lipid phase. These domains are found to be formed by interdigitating the chains of the lipids, producing a thinner membrane. Such a phase is less intense in the cholesterol-containing membrane. All of these results indicate that the IL molecules may deform the cholesterol-free membrane of a bacterial cell, but the same may not be harmful to human beings as cholesterol could restrict the insertion in the cellular membrane of a human cell.


Subject(s)
Ionic Liquids , Humans , Ionic Liquids/pharmacology , Prospective Studies , Cell Membrane/metabolism , Lipid Bilayers/metabolism , Cholesterol
6.
Langmuir ; 38(45): 13803-13813, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36321388

ABSTRACT

Ionic liquids based on doubly charged cations, often termed dicationic ionic liquids (DILs), offer robust physicochemical properties and low toxicity than conventional monocationic ionic liquids. In this design-based study, we used solid-state NMR spectroscopy to provide the interaction mechanism of two DILs, 1,n-bis(3-alkylimidazolium-1-yl) alkane dibromide ([C2n(C7-nIM)2]2+·2Br-, n = 1, 6), with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (POPG) phospholipid membranes, to explain the low toxicity of DILs toward HeLa, Escherichia coli, Bacillus subtilis, and Saccharomyces cerevisiae cell lines. Dications with a short linker and long terminal chains cause substantial perturbation to the bilayer structure, making them more membrane permeabilizing, as shown by fluorescence-based dye leakage assays. The structural perturbation is even higher than [C12(MIM)]+ monocations, which carry a single 12-carbon long chain and exhibit a much higher membrane affinity, permeability, and cytotoxicity. These structural details are a crucial contribution to the design strategies aimed at harnessing the biological activity of ionic liquids.


Subject(s)
Ionic Liquids , Phospholipids , Lipid Bilayers/chemistry , Ionic Liquids/toxicity , Ionic Liquids/chemistry , Alkanes/toxicity , Escherichia coli/metabolism
7.
Langmuir ; 38(31): 9649-9659, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35878409

ABSTRACT

Curcumin, the main ingredient in turmeric, has attracted attention due to its potential anti-inflammatory, anticancer, wound-healing, and antioxidant properties. Though curcumin efficacy is related to its interaction with biomembranes, there are few reports on the effects of curcumin on the lateral motion of lipids, a fundamental process in the cell membrane. Employing the quasielastic neutron scattering technique, we explore the effects of curcumin on the lateral diffusion of the dipalmotylphosphatidylcholine (DPPC) membrane. Our investigation is also supported by Fourier transform infrared spectroscopy, dynamic light scattering, and calorimetry to understand the interaction between curcumin and the DPPC membrane. It is found that curcumin significantly modulates the packing arrangement and conformations of DPPC lipid, leading to enhanced membrane dynamics. In particular, we find that the presence of curcumin substantially accelerates the DPPC lateral motion in both ordered and fluid phases. The effects are more pronounced in the ordered phase where the lateral diffusion coefficient increases by 23% in comparison to 9% in the fluid phase. Our measurements provide critical insights into molecular mechanisms underlying increased lateral diffusion. In contrast, the localized internal motions of DPPC are barely altered, except for a marginal enhancement observed in the ordered phase. In essence, these findings indicate that curcumin is favorably located at the membrane interface rather than in a transbilayer configuration. Further, the unambiguous evidence that curcumin modulates the membrane dynamics at a molecular level supports a possible action mechanism in which curcumin can act as an allosteric regulator of membrane functionality.


Subject(s)
Curcumin , Lipid Bilayers , 1,2-Dipalmitoylphosphatidylcholine/chemistry , Cell Membrane/chemistry , Curcumin/chemistry , Lipid Bilayers/chemistry , Membranes , Motion
9.
Langmuir ; 38(11): 3412-3421, 2022 03 22.
Article in English | MEDLINE | ID: mdl-35263113

ABSTRACT

Amphiphilic imidazolium-based ionic liquids (ILs) have proven their efficacy in altering the membrane integrity and dynamics. The present article investigates the phase-separated domains in a 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) membrane induced by 1,3 dialkylated imidazolium IL. Isotherm measurements on DPPC monolayers formed at the air-water interface have shown a decrease in the mean molecular area with the addition of this IL. The positive value of the excess Gibbs free energy of mixing indicates an unfavorable mixing of the IL into the lipid. This leads to IL-induced phase-separated domains in the multilayer of the lipid confirmed by the occurrence of two sets of equidistance peaks in the X-ray reflectivity data. The electron density profile along the surface normal obtained by the swelling method shows the bilayer thickness of the newly formed IL-rich phase to be substantially lower (∼34 Å) than the DPPC phase (∼45.8 Å). This IL-rich phase has been confirmed to be interdigitated, showing an enhanced electron density in the tail region due to the overlapping hydrocarbon chains. Differential scanning calorimetry measurements showed that the incorporation of IL enhances the fluidity of the lipid bilayer. Therefore, the study indicates the formation of an interdigitated phase with a lower order compared to the gel phase in the DPPC membrane supplemented with the IL.


Subject(s)
Ionic Liquids , 1,2-Dipalmitoylphosphatidylcholine/chemistry , Calorimetry, Differential Scanning , Ionic Liquids/chemistry , Lipid Bilayers/chemistry , Membranes , Phospholipids/chemistry
10.
Genome Biol ; 23(1): 6, 2022 01 03.
Article in English | MEDLINE | ID: mdl-34980227

ABSTRACT

BACKGROUND: RNA-targeting CRISPR-Cas can provide potential advantages over DNA editing, such as avoiding pleiotropic effects of genome editing, providing precise spatiotemporal regulation, and expanded function including antiviral immunity. RESULTS: Here, we report the use of CRISPR-Cas13 in plants to reduce both viral and endogenous RNA. Unexpectedly, we observe that crRNA designed to guide Cas13 could, in the absence of the Cas13 protein, cause substantial reduction in RNA levels as well. We demonstrate Cas13-independent guide-induced gene silencing (GIGS) in three plant species, including stable transgenic Arabidopsis. Small RNA sequencing during GIGS identifies the production of small RNA that extend beyond the crRNA expressed sequence in samples expressing multi-guide crRNA. Additionally, we demonstrate that mismatches in guide sequences at position 10 and 11 abolish GIGS. Finally, we show that GIGS is elicited by guides that lack the Cas13 direct repeat and can extend to Cas9 designed crRNA of at least 28 base pairs, indicating that GIGS can be elicited through a variety of guide designs and is not dependent on Cas13 crRNA sequences or design. CONCLUSIONS: Collectively, our results suggest that GIGS utilizes endogenous RNAi machinery despite the fact that crRNA are unlike canonical triggers of RNAi such as miRNA, hairpins, or long double-stranded RNA. Given similar evidence of Cas13-independent silencing in an insect system, it is likely GIGS is active across many eukaryotes. Our results show that GIGS offers a novel and flexible approach to RNA reduction with potential benefits over existing technologies for crop improvement and functional genomics.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Gene Editing/methods , RNA/genetics , RNA Interference , RNA, Guide, Kinetoplastida/genetics , Sequence Analysis, RNA
12.
Biochim Biophys Acta Biomembr ; 1863(6): 183589, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33652006

ABSTRACT

Ionic liquids (ILs) are the attractions of researchers today due to their vast area of potential applications. For biomedical uses, it becomes essential to understand their interactions with cellular membrane. Here, the membrane is mimicked with lipid bilayer and monolayer composed of liver lipids extract. Three archetypal imidazolium based ILs, 1-decyl-3-methylimidazolium tetrafluoroborate ([DMIM][BF4] or [C10MIM][BF4]), 1-octyl-3-methylimidazolium tetrafluoroborate, ([OMIM][BF4] or [C8MIM][BF4]) and 1-ethyl-3-methylimidazolium tetrafluoroborate ([EMIM][BF4] or [C2MIM][BF4]) having different alkyl chain lengths are used in the present study. The isothermal titration calorimetry (ITC) measurements showed that [DMIM][BF4] interacts strongest with the liver lipid membrane compared to other two ILs which have relatively shorter alkyl chain length. The low values of stoichiometry ratio of ILs indicates that ILs penetrate within the core of the lipid bilayer. The interaction of ILs with the liver lipid membrane is found to be mainly driven by entropy which could be due to the change in the structure of the lipid membrane at local or global scales. Dynamic light scattering (DLS) measurements indicate that there are no changes in the size of vesicles due to addition of [DMIM][BF4] indicating stability of the vesicles. On the other hand, x-ray reflectivity (XRR) measurements showed a concentration dependent change in the monolayer structure. At low concentration of the IL, the monolayer thickness decreases, exhibiting an increase in the electron density of the layer. However, at higher concentrations, the monolayer thickness increases proving a concentration dependent effects of the IL on the arrangement of the molecules.


Subject(s)
Cell Membrane/chemistry , Ionic Liquids/chemistry , Liver/metabolism , Animals , Calorimetry , Cell Membrane/metabolism , Imidazoles/chemistry , Ionic Liquids/metabolism , Thermodynamics , Unilamellar Liposomes/chemistry , Unilamellar Liposomes/metabolism
13.
Methods Mol Biol ; 2170: 1-18, 2021.
Article in English | MEDLINE | ID: mdl-32797447

ABSTRACT

Application of the CRISPR-Cas prokaryotic immune system for single-stranded RNA targeting will have significant impacts on RNA analysis and engineering. The class 2 Type VI CRISPR-Cas13 system is an RNA-guided RNA-nuclease system capable of binding and cleaving target single-stranded RNA substrates in a sequence-specific manner. In addition to RNA interference, the Cas13a system has application from manipulating RNA modifications, to editing RNA sequence, to use as a nucleic acid detection tool. This protocol uses the Cas13a ortholog from Leptotrichia buccalis for transient expression in plant cells providing antiviral defense. We cover all the necessary information for cloning the Cas13 protein, crRNA guide cassette, performing transient Agrobacterium-mediated expression of the necessary Cas13a components and target RNA-virus, visualization of virus infection, and molecular quantification of viral accumulation using quantitative PCR.


Subject(s)
Biotechnology/methods , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Nicotiana/metabolism , RNA Editing/genetics , RNA Interference/physiology , Nicotiana/genetics , Transcriptome/genetics
14.
Front Chem ; 8: 577508, 2020.
Article in English | MEDLINE | ID: mdl-33330366

ABSTRACT

Ionic liquids (ILs) are an important class of emerging compounds, owing to their widespread industrial applications in high-performance lubricants for food and cellulose processing, despite their toxicity to living organisms. It is believed that this toxicity is related to their actions on the cellular membrane. Hence, it is vital to understand the interaction of ILs with cell membranes. Here, we report on the effects of an imidazolium-based IL, 1-decyl-3-methylimidazolium tetrafluoroborate (DMIM[BF4]), on the microscopic dynamics of a membrane formed by liver extract lipid, using quasielastic neutron scattering (QENS). The presence of significant quasielastic broadening indicates that stochastic molecular motions of the lipids are active in the system. Two distinct molecular motions, (i) lateral motion of the lipid within the membrane leaflet and (ii) localized internal motions of the lipid, are found to contribute to the QENS broadening. While the lateral motion could be described assuming continuous diffusion, the internal motion is explained on the basis of localized translational diffusion. Incorporation of the IL into the liver lipid membrane is found to enhance the membrane dynamics by accelerating both lateral and internal motions of the lipids. This indicates that the IL induces disorder in the membrane and enhances the fluidity of lipids. This could be explained on the basis of its location in the lipid membrane. Results are compared with various other additives and we provide an indication of a possible correlation between the effects of guest molecules on the dynamics of the membrane and its location within the membrane.

15.
Langmuir ; 36(50): 15189-15211, 2020 12 22.
Article in English | MEDLINE | ID: mdl-33300335

ABSTRACT

The membrane is one of the key structural materials of biology at the cellular level. Composed predominantly of a bilayer of lipids with embedded and bound proteins, it defines the boundaries of the cell and many organelles essential to life and therefore is involved in almost all biological processes. Membrane-specific interactions, such as drug binding to a membrane receptor or the interactions of an antimicrobial compound with the lipid matrix of a pathogen membrane, are of interest across the scientific disciplines. Herein we present a review, aimed at nonexperts, of the major neutron scattering techniques used in membrane studies: small-angle neutron scattering, neutron membrane diffraction, neutron reflectometry, quasielastic neutron scattering, and neutron spin echo. Neutron scattering techniques are well suited to studying biological membranes. The nondestructive nature of cold neutrons means that samples can be measured for long periods without fear of beam damage from ultraviolet, electron, or X-ray radiation, and neutron beams are highly penetrating, thus offering flexibility in samples and sample environments. Most important is the strong difference in neutron scattering lengths between the two most abundant forms of hydrogen, protium and deuterium. Changing the relative amounts of protium/deuterium in a sample allows the production of a series of neutron scattering data sets, enabling the observation of differing components within complex membrane architectures. This approach can be as simple as using the naturally occurring neutron contrast between different biomolecules to study components in a complex by changing the solution H2O/D2O ratio or as complex as selectively labeling individual components with hydrogen isotopes. This review presents an overview of each experimental technique with the neutron instrument configuration, related sample preparation and sample environment, and data analysis, highlighted by a special emphasis on using prominent neutron contrast to understand structure and dynamics. This review gives researchers a practical introduction to the often enigmatic suite of neutron beamlines, thereby lowering the barrier to taking advantage of these large-facility techniques to achieve new understandings of membranes and their interactions with other molecules.

16.
Mini Rev Med Chem ; 20(3): 183-195, 2020.
Article in English | MEDLINE | ID: mdl-31774045

ABSTRACT

The ubiquitous occurrence of Antimicrobial Peptides (AMPs) in all domains of life emphasizes their crucial role as ancient mediators of host defense. Despite their antiquity and prolonged history of exposure to pathogens, endogenous AMPs continue to serve as effective antibiotics. An "evolutionary arms race" between host and pathogen resulted in structural diversity of AMPs, leading these molecules to retain activity against a wide range of pathogens, including antibiotic-resistant microbes. As the menace of antibiotic resistance continues to render most antibiotics ineffective against pathogens, the search for novel drug candidates has taken the center stage. The ability of AMPs to combat antibiotic-resistant microbes gave rise to a remarkable surge of interest in AMPs as potential therapeutics. Apart from being effective antimicrobials, AMPs have also found application as probes suitable for in-situ diagnosis of infection. Here, we review the evolutionary history of AMPs, their structural diversity, and mechanism of interaction with microbial membranes. We also summarize the role of AMPs as modern pharmaceuticals and challenges to this development.


Subject(s)
Anti-Infective Agents/pharmacology , Antimicrobial Cationic Peptides , Drug Discovery , Drug Resistance, Multiple/drug effects , Oligopeptides/pharmacology , Peptides, Cyclic/pharmacology , Amino Acid Sequence , Animals , Anti-Infective Agents/administration & dosage , Anti-Infective Agents/chemistry , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/immunology , Antimicrobial Cationic Peptides/pharmacology , Communicable Diseases/diagnosis , Communicable Diseases/drug therapy , Communicable Diseases/microbiology , Evolution, Molecular , Humans , Oligopeptides/chemistry , Oligopeptides/immunology , Peptides, Cyclic/chemistry , Peptides, Cyclic/immunology , Structure-Activity Relationship
17.
Langmuir ; 36(1): 397-408, 2020 01 14.
Article in English | MEDLINE | ID: mdl-31793791

ABSTRACT

Ubiquicidin (UBI)/ribosomal protein S30 (RS30) is an intracellular protein with antimicrobial activities against various pathogens. UBI (29-41) and UBI (31-38) are two crucial peptides derived from Ubiquicidin, which have shown potential as infection imaging probes. Here, we report the interactions of UBI-derived peptides with anionic and zwitterionic phospholipid membranes. Our isothermal titration calorimetry results show that both peptides selectively interact with the anionic phospholipid membrane (a model bacterial membrane) and reside mainly on the membrane surface. The interaction of UBI-derived peptides with the anionic phospholipid membrane is exothermic and driven by both enthalpy (ΔH) and entropy (ΔS), with the entropic term TΔS being greater than ΔH. This large entropic term can be a result of the aggregation of the anionic vesicles, which is confirmed by dynamic light scattering (DLS) measurements. DLS data show that vesicle aggregation is enhanced with increasing peptide-to-lipid molar ratios (P/L) and is found to be more pronounced in the case of UBI (29-41). DLS results are found to be consistent with independent transmission measurements. To study the effects of UBI-derived peptides on the microscopic dynamics of the model bacterial membrane, quasielastic neutron scattering (QENS) measurements have been carried out. The QENS results show that both peptides restrict the lateral motion of the lipid within the leaflet. UBI (29-41) acts as a stronger stiffening agent, hindering the lateral diffusion of lipids more efficiently than UBI (31-38). To our knowledge, this is the first report illustrating the mechanism of interaction of UBI-derived peptides with model membranes. This study also has implications for the improvement and design of antimicrobial peptide-based infection imaging probes.

18.
Biochim Biophys Acta Biomembr ; 1862(2): 183103, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31669570

ABSTRACT

Here, we report the toxic effects of various imidazolium-based ionic liquids (ILs) with varying hydrocarbon chain lengths, on different human cell lines. Multiple biological assays have shown that the ILs with long hydrocarbon chains have stronger adverse effect especially on human liver cancer cells (Huh-7.5 cells). Further, our study has confirmed that the ILs induce necrosis dependent cell death and that it is related to cell membrane damage. To understand the molecular mechanism of such an effect, the cellular membranes were mimicked as lipid monolayers formed at the air-water interface and then as lipid bilayer vesicles. The pressure area-isotherms measured from the monolayer have shown that the interaction of ILs with the lipid layer is energetically favourable. The addition of these ILs reduces the in-plane elasticity of the self-assembled molecular layer. Quasielastic neutron scattering data clearly indicate that ILs in liver lipid vesicles significantly affects the dynamics of the lipid, in particular, the lateral motion of the lipids. It has been concluded that the mammalian cell death induced by these ILs is due to the modulated structure and altered physical properties of the cellular membrane.


Subject(s)
Cell Membrane/drug effects , Imidazoles/chemistry , Ionic Liquids/pharmacology , Membrane Lipids/chemistry , Cell Death/drug effects , Cell Membrane/chemistry , Diffusion , Elasticity , HCT116 Cells , Hep G2 Cells , Humans , Ionic Liquids/chemistry , Ionic Liquids/toxicity , MCF-7 Cells
19.
Langmuir ; 35(13): 4682-4692, 2019 04 02.
Article in English | MEDLINE | ID: mdl-30807692

ABSTRACT

The maintenance of cell membrane fluidity is of critical importance for various cellular functions. At lower temperatures when membrane fluidity decreases, plants and cyanobacteria react by introducing unsaturation in the lipids, so that the membranes return to a more fluidic state. To probe how introduction of unsaturation leads to reduced membrane fluidity, a model cationic lipid dioctadecyldimethylammonium bromide (DODAB) has been chosen, and the effects of an unsaturated lipid monoolein (MO) on the structural dynamics and phase behavior of DODAB have been monitored by quasielastic neutron scattering and time-resolved fluorescence measurements. In the coagel phase, fluidity of the lipid bilayer increases significantly in the presence of MO relative to pure DODAB vesicles and becomes manifest in significantly enhanced dynamics of the constituent lipids along with faster hydration and orientational relaxation dynamics of a fluorophore. On the contrary, MO restricts both lateral and internal motions of the lipid molecules in the fluid phase (>330 K), which is consistent with relatively slow hydration and orientational relaxation dynamics of the fluorophore embedded in the mixed lipid bilayer. The present study illustrates how incorporation of an unsaturated lipid at lower temperatures (below the phase transition) assists the model lipid (DODAB) in regulating fluidity via enhancement of dynamics of the constituent lipids.


Subject(s)
Cations/chemistry , Glycerides/chemistry , Lipid Bilayers/chemistry , Calorimetry, Differential Scanning , Quaternary Ammonium Compounds/chemistry
20.
Langmuir ; 35(44): 14151-14172, 2019 11 05.
Article in English | MEDLINE | ID: mdl-30730752

ABSTRACT

A process in which a disordered system of pre-existing molecules generates an organized structure through specific, local interactions among the molecules themselves is termed molecular self-assembly. Micelles, microemulsions, and vesicles are examples of such self-assembled systems where amphiphilic molecules are involved. As the functional properties of these systems (such as wetting and emulsification, release of solubilized drugs, etc.) are dictated by the dynamic behavior of the surfactants at the molecular level, it is of immense interest to investigate these systems for the same. The dynamics in soft matter systems is quite complex, involving different time and length scales. We used a combination of neutron scattering and molecular dynamics simulation studies in probing the dynamic landscape in various self-assembled surfactant aggregates. Neutron scattering experiments were carried out using several spectrometers covering a wide dynamic range to probe motions on different time scales. The interaction between the surfactants can be varied by changing the molecular architecture, counterion concentration, temperature, and so forth. It is important to study the effect of these parameters on the dynamics of surfactants in these aggregates. We have carried out experiments on various ionic (anionic as well as cationic) micelles with varied counterion concentrations, vesicles, and lipid bilayers to unravel the complex dynamic features present in these systems. In this feature article, we will discuss some important results of our recent work on dynamics in these self-assembled surfactant aggregates.

SELECTION OF CITATIONS
SEARCH DETAIL
...