Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Life (Basel) ; 12(1)2022 Jan 03.
Article in English | MEDLINE | ID: mdl-35054456

ABSTRACT

Ultrastructural, neurochemical, and molecular alterations within the striatum are associated with the onset and progression of Parkinson's disease (PD). In PD, the dopamine-containing neurons in the substantia nigra pars compacta (SNc) degenerate and reduce dopamine-containing innervations to the striatum. The loss of striatal dopamine is associated with enhanced corticostriatal glutamatergic plasticity at the early stages of PD. However, with disease progression, the glutamatergic corticostriatal white matter tracts (WMTs) also degenerate. We analyzed the levels of Mu opioid receptors (MORs) in the corticostriatal WMTs, as a function of α-Synuclein (α-Syn) toxicity in transgenic mouse brains. Our data show an age-dependent loss of MOR expression levels in the striatum and specifically, within the caudal striatal WMTs in α-Syn tg mouse brains. The loss of MOR expression is associated with degeneration of the myelinated axons that are localized within the corticostriatal WMTs. In brains affected with late stages of PD, we detect evidence confirming the degeneration of myelinated axons within the corticostriatal WMTs. We conclude that loss of corticostriatal MOR expression is associated with degeneration of corticostriatal WMT in α-Syn tg mice, modeling PD.

2.
J Parkinsons Dis ; 11(4): 1725-1750, 2021.
Article in English | MEDLINE | ID: mdl-34151859

ABSTRACT

Recent data support an involvement of defects in homeostasis of phosphoinositides (PIPs) in the pathophysiology of Parkinson's disease (PD). Genetic mutations have been identified in genes encoding for PIP-regulating and PIP-interacting proteins, that are associated with familial and sporadic PD. Many of these proteins are implicated in vesicular membrane trafficking, mechanisms that were recently highlighted for their close associations with PD. PIPs are phosphorylated forms of the membrane phospholipid, phosphatidylinositol. Their composition in the vesicle's membrane of origin, as well as membrane of destination, controls vesicular membrane trafficking. We review the converging evidence that points to the involvement of PIPs in PD. The review describes PD- and PIP-associated proteins implicated in clathrin-mediated endocytosis and autophagy, and highlights the involvement of α-synuclein in these mechanisms.


Subject(s)
Parkinson Disease , Autophagy , Endocytosis , Humans , Parkinson Disease/genetics , Phosphatidylinositols/chemistry , alpha-Synuclein/genetics , alpha-Synuclein/metabolism
3.
Front Neurol ; 12: 716126, 2021.
Article in English | MEDLINE | ID: mdl-35046880

ABSTRACT

Mannitol, a natural alcoholic-sugar, was recently suggested as a potential disease-modifying agent in Parkinson's disease. In animal models of the disease, mannitol interferes with the formation of α-synuclein fibrils, inhibits the formation of α-synuclein oligomers and leads to phenotypic recovery of impaired motor functions. Parkinson's patients who consume mannitol report improvements of both motor and non-motor symptoms. Safety of long-term use of oral mannitol, tolerable dose and possible benefit, however, were never clinically studied. We studied the safety of oral mannitol in Parkinson's disease and assessed the maximal tolerable oral dose by conducting a phase IIa, randomized, double-blind, placebo-controlled, single-center, dose-escalating study (ClinicalTrials.gov Identifier: NCT03823638). The study lasted 36 weeks and included four dose escalations of oral mannitol or dextrose to a maximal dose of 18 g per day. The primary outcome was the safety of oral mannitol, as assessed by the number of adverse events and abnormal laboratory results. Clinical and biochemical efficacy measures were collected but were not statistically-powered. Fourteen patients receiving mannitol completed the trial (in addition to eight patients on placebo). Mannitol-related severe adverse events were not observed. Gastrointestinal symptoms limited dose escalation in 6/14 participants on mannitol. None of the clinical or biochemical efficacy secondary outcome measures significantly differed between groups. We concluded that long-term use of 18 g per day of oral mannitol is safe in Parkinson's disease patients but only two third of patients tolerate this maximal dose. These findings should be considered in the design of future efficacy trials.

4.
J Biol Chem ; 295(52): 18076-18090, 2020 12 25.
Article in English | MEDLINE | ID: mdl-33087443

ABSTRACT

α-Synuclein (α-Syn) is a protein implicated in the pathogenesis of Parkinson's disease (PD). It is an intrinsically disordered protein that binds acidic phospholipids. Growing evidence supports a role for α-Syn in membrane trafficking, including, mechanisms of endocytosis and exocytosis, although the exact role of α-Syn in these mechanisms is currently unclear. Here we investigate the associations of α-Syn with the acidic phosphoinositides (PIPs), phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2). Our results show that α-Syn colocalizes with PIP2 and the phosphorylated active form of the clathrin adaptor protein 2 (AP2) at clathrin-coated pits. Using endocytosis of transferrin as an indicator for clathrin-mediated endocytosis (CME), we find that α-Syn involvement in endocytosis is specifically mediated through PI(4,5)P2 levels on the plasma membrane. In accord with their effects on PI(4,5)P2 levels, the PD associated A30P, E46K, and A53T mutations in α-Syn further enhance CME in neuronal and nonneuronal cells. However, lysine to glutamic acid substitutions at the KTKEGV repeat domain of α-Syn, which interfere with phospholipid binding, are ineffective in enhancing CME. We further show that the rate of synaptic vesicle (SV) endocytosis is differentially affected by the α-Syn mutations and associates with their effects on PI(4,5)P2 levels, however, with the exception of the A30P mutation. This study provides evidence for a critical involvement of PIPs in α-Syn-mediated membrane trafficking.


Subject(s)
Adaptor Protein Complex 2/metabolism , Cell Membrane/metabolism , Clathrin-Coated Vesicles/metabolism , Clathrin/metabolism , Endocytosis , Phosphatidylinositol 4,5-Diphosphate/metabolism , alpha-Synuclein/metabolism , Adaptor Protein Complex 2/genetics , Animals , Humans , Mice , Mice, Inbred C57BL , Phosphorylation , alpha-Synuclein/genetics
5.
Mol Neurodegener ; 15(1): 24, 2020 03 30.
Article in English | MEDLINE | ID: mdl-32228705

ABSTRACT

BACKGROUND: α-Synuclein (α-Syn) is a protein implicated in the pathogenesis of Parkinson's disease (PD). α-Syn has been shown to associate with membranes and bind acidic phospholipids. However, the physiological importance of these associations to the integrity of axons is not fully clear. METHODS: Biochemical, immunohistochemical and ultrastructural analyses in cultured neurons, transgenic mouse brains, PD and control human brains. RESULTS: We analyzed the ultrastructure of cross-sectioned axons localized to white matter tracts (WMTs), within the dorsal striatum of old and symptomatic α-Syn transgenic mouse brains. The analysis indicated a higher density of axons of thinner diameter. Our findings in cultured cortical neurons indicate a role for α-Syn in elongation of the main axon and its collaterals, resulting in enhanced axonal arborization. We show that α-Syn effect to enhance axonal outgrowth is mediated through its activity to regulate membrane levels of the acidic phosphatidylinositol 4,5-bisphosphate (PI4,5P2). Moreover, our findings link α-Syn- enhanced axonal growth with evidence for axonal injury. In relevance to disease mechanisms, we detect in human brains evidence for a higher degree of corticostriatal glutamatergic plasticity within WMTs at early stages of PD. However, at later PD stages, the respective WMTs in the caudate are degenerated with accumulation of Lewy pathology. CONCLUSIONS: Our results show that through regulating PI4,5P2 levels, α-Syn acts to elongate the main axon and collaterals, resulting in a higher density of axons in the striatal WMTs. Based on these results we suggest a role for α-Syn in compensating mechanisms, involving corticostriatal glutamatergic plasticity, taking place early in PD.


Subject(s)
Axons/ultrastructure , Brain/metabolism , Neuronal Plasticity/physiology , Parkinson Disease , alpha-Synuclein/metabolism , Animals , Axons/metabolism , Brain/ultrastructure , Humans , Mice , Mice, Transgenic , Microscopy, Electron, Transmission , Neural Pathways/metabolism , Neural Pathways/physiopathology , Phosphatidylinositol 4,5-Diphosphate/metabolism , White Matter/metabolism , White Matter/ultrastructure
6.
iScience ; 23(3): 100910, 2020 Mar 27.
Article in English | MEDLINE | ID: mdl-32120069

ABSTRACT

α-Synuclein (α-Syn) protein is implicated in the pathogenesis of Parkinson disease (PD). It is primarily cytosolic and interacts with cell membranes. α-Syn also occurs in the nucleus. Here we investigated the mechanisms involved in nuclear translocation of α-Syn. We analyzed alterations in gene expression following induced α-Syn expression in SH-SY5Y cells. Analysis of upstream regulators pointed at alterations in transcription activity of retinoic acid receptors (RARs) and additional nuclear receptors. We show that α-Syn binds RA and translocates to the nucleus to selectively enhance gene transcription. Nuclear translocation of α-Syn is regulated by calreticulin and is leptomycin-B independent. Importantly, nuclear translocation of α-Syn following RA treatment enhances its toxicity in cultured neurons and the expression levels of PD-associated genes, including ATPase cation transporting 13A2 (ATP13A2) and PTEN-induced kinase1 (PINK1). The results link a physiological role for α-Syn in the regulation of RA-mediated gene transcription and its toxicity in the synucleinopathies.

7.
J Neurochem ; 152(1): 61-71, 2020 01.
Article in English | MEDLINE | ID: mdl-31520492

ABSTRACT

It has been suggested that extracellular alpha synuclein (αSyn) can mediate neuroinflammation in Parkinson's disease, and that αSyn affects B-cell maturation. However, the function of αSyn in T cells is poorly understood. We hypothesized that αSyn can affect CD4+ T-cell proliferation and activity. We found that αSyn deficiency exacerbates disease progression in 8 weeks old C57BL6/J EAE-induced mice, and that αSyn-deficient CD4+ T cells have increased pro-inflammatory response to myelin antigen relative to wild-type cells, as measured by cytokine secretion of interleukin IL-17 and interferon gamma. Furthermore, expression of αSyn on a background of αSyn knockout mitigates the inflammatory responses in CD4+ T cells. We discovered that elevated levels of Nurr1, a transcription factor belonging to the orphan nuclear receptor family, are associated with the pro-inflammatory profile of αSyn-deficient CD4+ T cells. In addition, we demonstrated that silencing of Nurr1 expression using an siRNA reduces IL-17 levels and increases the levels of IL-10, an anti-inflammatory cytokine. Study of αSyn-mediated cellular pathways in CD4+ T cells may provide useful insights into the development of pro-inflammatory responses in immunity, providing future avenues for therapeutic intervention.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Lymphocyte Activation/physiology , Nuclear Receptor Subfamily 4, Group A, Member 2/physiology , alpha-Synuclein/deficiency , Animals , Cell Proliferation , Female , Gene Expression Regulation , Gene Silencing , Inflammation/immunology , Inflammation/physiopathology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Multiple Sclerosis/immunology , Nuclear Receptor Subfamily 4, Group A, Member 2/genetics , Th1 Cells/immunology , alpha-Synuclein/genetics , alpha-Synuclein/physiology
8.
Ann Clin Transl Neurol ; 6(12): 2426-2436, 2019 12.
Article in English | MEDLINE | ID: mdl-31742923

ABSTRACT

OBJECTIVE: To determine whether blood cells expressed α-Syn can differentiate Parkinson's disease (PD) from healthy controls (HC). METHODS: The concentrations of α-Syn were determined in samples of blood cell pellets using a quantitative Lipid-ELISA assay. In addition, the levels of total protein, hemoglobin, iron and H-ferritin were determined. The study includes samples from the Biofind cohort (n = 46 PD and 45 HC) and results were validated with an additional cohort (n = 35 PD and 28 HC). RESULTS: A composite biomarker consisting of the concentrations of total α-Syn, proteinase-K resistant (PKres ) α-Syn and phospho-Serine 129 α-Syn (PSer 129), is designed based on the analysis of the discovery BioFIND cohort. This composite biomarker differentiates a PD subgroup, presenting motor symptoms without dementia from a HC group, with a convincing accuracy, represented by an AUC = 0.81 (95% CI, 0.71 to 0.92). Closely similar results were obtained for the validation cohort, that is, AUC = 0.81, (95% CI, 0.70 to 0.94). INTERPRETATION: Our results demonstrate the potential usefulness of blood cells expressed α-Syn as a biomarker for PD.


Subject(s)
Blood Cells/metabolism , Parkinson Disease/blood , Parkinson Disease/diagnosis , alpha-Synuclein/blood , Aged , Aged, 80 and over , Biomarkers/blood , Cohort Studies , Female , Humans , Male , Middle Aged
9.
Acta Neuropathol Commun ; 5(1): 37, 2017 05 08.
Article in English | MEDLINE | ID: mdl-28482862

ABSTRACT

α-Synuclein is a protein involved in the pathogenesis of synucleinopathies, including Parkinson's disease (PD), dementia with Lewy bodies (DLB) and multiple system atrophy (MSA). We investigated the role of neuronal α-Syn in myelin composition and abnormalities. The phospholipid content of purified myelin was determined by 31P NMR in two mouse lines modeling PD, PrP-A53T α-Syn and Thy-1 wt-α-Syn. Significantly higher levels of phospholipids were detected in myelin purified from brains of these α-Syn transgenic mouse models than in control mice. Nevertheless, myelin ultrastructure appeared intact. To further investigate the effect of α-Syn on myelin abnormalities, we systematically analyzed the striatum, a brain region associated with neurodegeneration in PD. An age and disease-dependent loss of myelin basic protein (MBP) signal was detected by immunohistochemistry in striatal striosomes (patches). The age-dependent loss of MBP signal was associated with lower P25α levels in oligodendrocytes. In addition, we found that α-Syn inhibited oligodendrocyte maturation and the formation of membranous sheets in vitro. Based on these results we concluded that neuronal α-Syn is involved in the regulation and/or maintenance of myelin phospholipid. However, axonal hypomyelination in the PD models is evident only in progressive stages of the disease and associated with α-Syn toxicity.


Subject(s)
Brain/metabolism , Myelin Sheath/metabolism , Neurons/metabolism , Phospholipids/metabolism , alpha-Synuclein/metabolism , Aged , Aged, 80 and over , Aging/metabolism , Aging/pathology , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Brain/pathology , Brain/ultrastructure , Cells, Cultured , Disease Models, Animal , Female , Humans , Mice, Inbred C57BL , Mice, Inbred DBA , Mice, Transgenic , Myelin Basic Protein/metabolism , Myelin Sheath/pathology , Myelin Sheath/ultrastructure , Neurons/pathology , Neurons/ultrastructure , Parkinson Disease/metabolism , Parkinson Disease/pathology , Presenilin-1/genetics , Presenilin-1/metabolism , alpha-Synuclein/deficiency , alpha-Synuclein/genetics
10.
J Biol Chem ; 292(17): 6927-6937, 2017 04 28.
Article in English | MEDLINE | ID: mdl-28232489

ABSTRACT

α-Synuclein (aS) is a protein abundant in presynaptic nerve terminals in Parkinson disease (PD) and is a major component of intracellular Lewy bodies, the pathological hallmark of neurodegenerative disorders such as PD. Accordingly, the relationships between aS structure, its interaction with lipids, and its involvement in neurodegeneration have attracted great interest. Previously, we reported on the interaction of aS with brain polyunsaturated fatty acids, in particular docosahexaenoic acid (DHA). aS acquires an α-helical secondary structure in the presence of DHA and, in turn, affects DHA structural and aggregative properties. Moreover, aS forms a covalent adduct with DHA. Here, we provide evidence that His-50 is the main site of this covalent modification. To better understand the role of His-50, we analyzed the effect of DHA on aS-derived species: a naturally occurring variant, H50Q; an oxidized aS in which all methionines are sulfoxides (aS4ox); a fully lysine-alkylated aS (acetyl-aS); and aS fibrils, testing their ability to be chemically modified by DHA. We show, by mass spectrometry and spectroscopic techniques, that H50Q and aS4ox are modified by DHA, whereas acetyl-aS is not. We correlated this modification with aS structural features, and we suggest a possible functional role of aS in sequestering the early peroxidation products of fatty acids, thereby reducing the level of highly reactive lipid species. Finally, we show that fibrillar aS loses almost 80% of its scavenging activity, thus lacking a potentially protective function. Our findings linking aS scavenging activity with brain lipid composition suggest a possible etiological mechanism in some neurodegenerative disorders.


Subject(s)
Fatty Acids, Unsaturated/metabolism , Neuroprotection , alpha-Synuclein/metabolism , Arachidonic Acid/metabolism , Binding Sites , Brain/metabolism , Circular Dichroism , Docosahexaenoic Acids/metabolism , Humans , Lipid Metabolism , Lysine/chemistry , Mass Spectrometry , Methionine/chemistry , Oxygen/chemistry , Parkinson Disease/metabolism , Protein Structure, Secondary , Trypsin/chemistry
11.
J Neurosci ; 37(1): 47-57, 2017 01 04.
Article in English | MEDLINE | ID: mdl-28053029

ABSTRACT

α-Synuclein overexpression (ASOX) drives the formation of toxic aggregates in neurons vulnerable in Parkinson's disease (PD), including dopaminergic neurons of the substantia nigra (SN) and cholinergic neurons of the dorsal motor nucleus of the vagus (DMV). Just as these populations differ in when they exhibit α-synucleinopathies during PD pathogenesis, they could also differ in their physiological responses to ASOX. An ASOX-mediated hyperactivity of SN dopamine neurons, which was caused by oxidative dysfunction of Kv4.3 potassium channels, was recently identified in transgenic (A53T-SNCA) mice overexpressing mutated human α-synuclein. Noting that DMV neurons display extensive α-synucleinopathies earlier than SN dopamine neurons while exhibiting milder cell loss in PD, we aimed to define the electrophysiological properties of DMV neurons in A53T-SNCA mice. We found that DMV neurons maintain normal firing rates in response to ASOX. Moreover, Kv4.3 channels in DMV neurons exhibit no oxidative dysfunction in the A53T-SNCA mice, which could only be recapitulated in wild-type mice by glutathione dialysis. Two-photon imaging of redox-sensitive GFP corroborated the finding that mitochondrial oxidative stress was diminished in DMV neurons in the A53T-SNCA mice. This reduction in oxidative stress resulted from a transcriptional downregulation of voltage-activated (Cav) calcium channels in DMV neurons, which led to a reduction in activity-dependent calcium influx via Cav channels. Thus, ASOX induces a homeostatic remodeling with improved redox signaling in DMV neurons, which could explain the differential vulnerability of SN dopamine and DMV neurons in PD and could promote neuroprotective strategies that emulate endogenous homeostatic responses to ASOX (e.g., stressless pacemaking) in DMV neurons. SIGNIFICANCE STATEMENT: Overexpression of mutant α-synuclein causes Parkinson's disease, presumably by driving neurodegeneration in vulnerable neuronal target populations. However, the extent of α-synuclein pathology (e.g., Lewy bodies) is not directly related to the degree of neurodegeneration across various vulnerable neuronal populations. Here, we show that, in contrast to dopamine neurons in the substantia nigra, vagal motoneurons do not enhance their excitability and oxidative load in response to chronic mutant α-synuclein overexpression. Rather, by downregulating their voltage-activated calcium channels, vagal motoneurons acquire a stressless form of pacemaking that diminishes mitochondrial and cytosolic oxidative stress. Emulating this endogenous adaptive response to α-synuclein overexpression could lead to novel strategies to protect dopamine neurons and perhaps delay the onset of Parkinson's disease.


Subject(s)
Biological Clocks , Motor Neurons , Parkinson Disease/physiopathology , Vagus Nerve/physiology , alpha-Synuclein/biosynthesis , alpha-Synuclein/genetics , Animals , Calcium Channels/genetics , Calcium Channels/metabolism , Calcium Signaling/genetics , Dopaminergic Neurons/physiology , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mitochondria/metabolism , Oxidative Stress , Shal Potassium Channels/metabolism , Signal Transduction/genetics , Substantia Nigra/cytology , Substantia Nigra/physiology , Vagus Nerve/cytology
12.
Anal Bioanal Chem ; 408(27): 7669-7677, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27624766

ABSTRACT

The validity of α-synuclein (α-Syn) as a biomarker for Parkinson's disease (PD) is still under investigation. Conventional methods for capture and quantitation of α-Syn protein in human samples are primarily based on anti-α-Syn antibodies. Specific and competent antibodies were raised against α-Syn. However, capture by anti-α-Syn antibodies may be limited to specific epitope recognition, attributed to protein structure or post-translational modifications. Hence, antibody-based methods for α-Syn capture raise a concern regarding their efficacy to detect the intracellular, unfolded α-Syn pool. An alternative is α-Syn capture by membrane lipids, i.e., to utilize the biochemical property of α-Syn to specifically bind membrane lipids and acquire a characteristic structure following binding. We determined α-Syn levels in human samples using immobilized lipids for α-Syn capture. The lipids used for α-Syn capture consist of phosphatidyl inositol (PI), phosphatidyl serine (PS), and phosphatidyl ethanolamine (PE). Addition of mono-sialoganglioside, GM1 ganglioside, to the immobilized lipids significantly improved α-Syn detection. Following capture, the lipid-bound α-Syn was detected using an anti-α-Syn antibody. Total α-Syn levels in whole blood cells (WBC), cerebrospinal fluid (CSF), and saliva were determined by the lipid-ELISA method.


Subject(s)
Enzyme-Linked Immunosorbent Assay/methods , Parkinson Disease/blood , Parkinson Disease/cerebrospinal fluid , Phospholipids/metabolism , alpha-Synuclein , Adult , Antibodies/chemistry , Blood Cells/chemistry , Female , G(M1) Ganglioside/metabolism , Healthy Volunteers , Humans , Male , Middle Aged , Parkinson Disease/diagnosis , Phosphatidylethanolamines/metabolism , Phosphatidylinositols/metabolism , Phosphatidylserines/metabolism , Protein Binding , Protein Conformation , Protein Folding , Saliva/chemistry , alpha-Synuclein/blood , alpha-Synuclein/cerebrospinal fluid
13.
J Neurophysiol ; 114(3): 1513-20, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26156385

ABSTRACT

Calcium influx elevates mitochondrial oxidant stress (mOS) in dorsal motor nucleus of the vagus (DMV) neurons that are prone to Lewy body pathologies in presymptomatic Parkinson's disease (PD) patients. In experimental PD models, treatment with isradipine, the dihydropyridine with the highest affinity to Cav1.3 channels, prevents subthreshold calcium influx via Cav1.3 channels into midbrain dopamine neurons and protects them from mOS. In DMV neurons, isradipine is also effective in reducing mOS despite overwhelming evidence that subthreshold calcium influx is negligible compared with spike-triggered influx. To solve this conundrum we combined slice electrophysiology, two-photon laser scanning microscopy, mRNA profiling, and computational modeling. We find that the unusually depolarized subthreshold voltage trajectory of DMV neurons is positioned between the relatively hyperpolarized activation curve of Cav1.3 channels and that of other high-voltage activated (HVA) calcium channels, thus creating a functional segregation between Cav1.3 and HVA calcium channels. The HVA channels flux the bulk of calcium during spikes but can only influence pacemaking through their coupling to calcium-activated potassium currents. In contrast, Cav1.3 currents, which we show to be more than an order-of-magnitude smaller than the HVA calcium currents, are able to introduce sufficient inward current to speed up firing. However, Kv4 channels that are constitutively open in the subthreshold range guarantee slow pacemaking, despite the depolarizing action of Cav1.3 and other pacemaking currents. We propose that the efficacy of isradipine in preventing mOS in DMV neurons arises from its mixed effect on Cav1.3 channels and on HVA Cav1.2 channels.


Subject(s)
Calcium Channels, L-Type/metabolism , Calcium/metabolism , Motor Neurons/metabolism , Vagus Nerve/metabolism , Action Potentials , Animals , Calcium Channels, L-Type/genetics , Mice , Mice, Inbred C57BL , Motor Neurons/physiology , Potassium Channels, Calcium-Activated/metabolism , Vagus Nerve/cytology , Vagus Nerve/physiology
14.
Sci Rep ; 5: 11120, 2015 Jun 11.
Article in English | MEDLINE | ID: mdl-26068055

ABSTRACT

A marker for diagnosis of Parkinson's disease (PD), which reflects on the occurrence of peripheral pathogenic mechanisms, would potentially improve therapy. The significance of α-Synuclein (α-Syn) expression in red blood cells (RBC) is currently unclear. Here we investigated whether RBC's-expressed α-Syn may associate with PD. To this aim, we determined the levels of total and proteinase K-resistant α-Syn in samples of packed red blood cells (PRBCs). Twenty-one individuals with PD at various disease stages and 15 healthy controls, with similar demographic features, were recruited to this study. α-Syn levels were determined by their biochemical property to bind phospholipids, using a phospholipid-ELISA assay. A significantly lower ratio of total-to-proteinase K-resistant α-Syn levels was detected in PD patients than in the healthy control group. However, there was considerable overlap between the two groups. Suggesting a need for additional markers to be tested in combination with α-Syn levels. To the best of our knowledge, this is the first evidence for an association between RBCs-expressed α-Syn and pathogenic mechanisms involved in PD.


Subject(s)
Endopeptidase K/chemistry , Erythrocytes/metabolism , Gene Expression Regulation , Parkinson Disease/blood , Phospholipids/blood , alpha-Synuclein/blood , Adult , Aged , Erythrocytes/pathology , Female , Humans , Male , Middle Aged , Parkinson Disease/pathology , Protein Binding
15.
Ann Clin Transl Neurol ; 1(3): 145-59, 2014 Mar.
Article in English | MEDLINE | ID: mdl-25356396

ABSTRACT

OBJECTIVE: While evidence for oxidative injury is frequently detected in brains of humans affected by Parkinson's disease (PD) and in relevant animal models, there is uncertainty regarding its cause. We tested the potential role of catalase in the oxidative injury that characterizes PD. METHODS: Utilizing brains of A53T α-Syn and ntg mice, and cultured cells, we analyzed catalase activity and expression, and performed biochemical analyses of peroxisomal metabolites. RESULTS: Lower catalase expression and lower activity levels were detected in A53T α-Syn brains and α-Syn-expressing cells. The effect on catalase activity was independent of disease progression, represented by mouse age and α-Syn mutation, suggesting a potential physiological function for α-Syn. Notably, catalase activity and expression were unaffected in brains of mice modeling Alzheimer's disease. Moreover, we found that α-Syn expression downregulate the peroxisome proliferator-activated receptor (PPAR)γ, which controls catalase transcription. Importantly, activation of either PPARγ2, PPARα or retinoic X receptor eliminated the inhibiting effect of α-Syn on catalase activity. In addition, activation of these nuclear receptors enhanced the accumulation of soluble α-Syn oligomers, resulting in a positive association between the degree of soluble α-Syn oligomers and catalase activity. Of note, a comprehensive biochemical analysis of specific peroxisomal metabolites indicated no signs of dysfunction in specific peroxisomal activities in brains of A53T α-Syn mice. INTERPRETATION: Our results suggest that α-Syn expression may interfere with the complex and overlapping network of nuclear receptors transcription activation. In result, catalase activity is affected through mechanisms involved in the regulation of soluble α-Syn oligomers.

16.
Neurobiol Dis ; 70: 90-8, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24905915

ABSTRACT

While α-Synuclein (α-Syn) is mainly detected as a cytosolic protein, a portion of it is recovered bound to membranes. It is suggested that binding to membrane phospholipids controls α-Syn structure, physiology and pathogenesis. We aimed at investigating the role, of the positive charged lysine residues at the KTKEGV repeat motif, in mediating α-Syn associations with membrane phospholipids and in α-Syn oligomerization and aggregation. Specifically, two positive lysine (K) residues were replaced with two negative glutamic acid (E) residues at either the first or second KTKEGV repeat motifs. The effect of these mutations on membrane binding was determined by a quantitative phospholipid ELISA assay and compared to wild-type α-Syn and to the Parkinson's disease-causing mutations, A30P, E46K and A53T. We found that the K to E substitutions affected α-Syn binding to phospholipids. In addition, K to E substitutions resulted in a dramatically lower level of soluble α-Syn oligomers and larger intracellular inclusions. Together, our results suggest a critical role for lysine residues at the N-terminal repeat domain in the pathophysiology of α-Syn.


Subject(s)
Cell Membrane/metabolism , Phospholipids/metabolism , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Amino Acid Sequence , Animals , Brain/metabolism , Cell Line , HEK293 Cells , Humans , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Molecular Sequence Data , Mutation , Parkinson Disease/genetics
17.
J Mol Neurosci ; 52(2): 167-76, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24048740

ABSTRACT

Parkinson's disease (PD) is a progressive age-dependent neurodegenerative disorder, predominantly affecting the dopamine-producing neurons residing at the substantia nigra. Abnormalities in α-synuclein (α-Syn) and dopamine transporter (DAT) are implicated in the pathogenesis of PD. We tested the hypothesis that α-Syn regulates surface DAT localization and DAT activity, in cultured cells co-expressing α-Syn and DAT, and in brains of mice modeling PD, transgenic for the mutant A53T α-Syn form. The results indicate that α-Syn expression affects the partitioning of DAT between the cell surface and intracellular compartments, resulting in lower surface DAT levels. Accordingly, lower uptake of tritiated dopamine was measured in synaptosomes of A53T α-Syn transgenic mouse brains. Importantly, we show that the effect of α-Syn on surface DAT is mediated by clathrin. Downregulation of clathrin by specific siRNAs directed against its heavy chain abolished the effect of α-Syn on phorbol 12-myristate 13-acetate-induced DAT internalization. These results suggest that α-Syn plays a role in regulating dopamine homeostasis through its involvement in clathrin-mediated endocytosis.


Subject(s)
Cell Membrane/metabolism , Clathrin/metabolism , Dopamine Plasma Membrane Transport Proteins/metabolism , alpha-Synuclein/metabolism , Animals , Cell Line, Tumor , Cells, Cultured , Clathrin/genetics , Dopamine/metabolism , Dopaminergic Neurons/metabolism , Mice , Protein Transport , Synaptosomes/metabolism , alpha-Synuclein/genetics
18.
PLoS One ; 7(10): e46817, 2012.
Article in English | MEDLINE | ID: mdl-23077527

ABSTRACT

Multiple system atrophy (MSA) is a progressive neurodegenerative disorder characterized by striatonigral degeneration and olivo-pontocerebellar atrophy. The histopathological hallmark of MSA is glial cytoplasmic inclusions (GCI) within oligodendrocytes, accompanied by neuronal degeneration. MSA is a synucleinopathy, and α-Synuclein (α-Syn) is the major protein constituent of the GCI. It is unclear how the neuronal α-Syn protein accumulates in oligodendrocytes. We tested the hypothesis that oligodendrocytes can take up neuronal-secreted α-Syn as part of the pathogenic mechanisms leading to MSA. We report that increases in the degree of α-Syn soluble oligomers or intracellular α-Syn levels, enhance its secretion from cultured MN9D dopaminergic cells, stably expressing the protein. In accord, we show that primary oligodendrocytes from rat brain and oligodendroglial cell lines take-up neuronal-secreted or exogenously added α-Syn from their conditioning medium. This uptake is concentration-, time-, and clathrin-dependent. Utilizing the demonstrated effect of polyunsaturated fatty acids (PUFA) to enhance α-Syn neuropathology, we show an in vivo effect for brain docosahexaenoic acid (DHA) levels on α-Syn localization to oligodendrocytes in brains of a mouse model for synucleinopathies, expressing human A53T α-Syn cDNA under the PrP promoter. Hence, pathogenic mechanisms leading to elevated levels of α-Syn in neurons underlie neuronal secretion and subsequent uptake of α-Syn by oligodendrocytes in MSA.


Subject(s)
Multiple System Atrophy/metabolism , Multiple System Atrophy/pathology , Oligodendroglia/metabolism , Oligodendroglia/pathology , alpha-Synuclein/metabolism , Animals , Brain/metabolism , Brain/pathology , Cell Line , Cells, Cultured , Clathrin/metabolism , Docosahexaenoic Acids/metabolism , Fatty Acids, Unsaturated/metabolism , Gene Expression , Humans , Mice , Mice, Inbred C57BL , Multiple System Atrophy/genetics , Rats , Transfection , alpha-Synuclein/genetics
19.
Brain Pathol ; 22(3): 280-94, 2012 May.
Article in English | MEDLINE | ID: mdl-21929559

ABSTRACT

α-Synuclein (α-Syn) is a neuronal protein that accumulates progressively in Parkinson's disease (PD) and related synucleinopathies. Attempting to identify cellular factors that affect α-Syn neuropathology, we previously reported that polyunsaturated fatty acids (PUFAs) promote α-Syn oligomerization and aggregation in cultured cells. We now report that docosahexaenoic acid (DHA), a 22:6 PUFA, affects α-Syn oligomerization by activating retinoic X receptor (RXR) and peroxisome proliferator-activated receptor γ2 (PPARγ2). In addition, we show that dietary changes in brain DHA levels affect α-Syn cytopathology in mice transgenic for the PD-causing A53T mutation in human α-Syn. A diet enriched in DHA, an activating ligand of RXR, increased the accumulation of soluble and insoluble neuronal α-Syn, neuritic injury and astrocytosis. Conversely, abnormal accumulations of α-Syn and its deleterious effects were significantly attenuated by low dietary DHA levels. Our results suggest a role for activated RXR/PPARγ 2, obtained by elevated brain PUFA levels, in α-Syn neuropathology.


Subject(s)
Brain/metabolism , Docosahexaenoic Acids/metabolism , Parkinson Disease/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , alpha-Synuclein/metabolism , Animals , Brain/pathology , Disease Models, Animal , Mice , Mice, Transgenic , Neurons/metabolism , Neurons/pathology , Parkinson Disease/genetics , Parkinson Disease/pathology , Receptors, Cytoplasmic and Nuclear/genetics , alpha-Synuclein/genetics
20.
PLoS One ; 6(5): e19622, 2011.
Article in English | MEDLINE | ID: mdl-21611169

ABSTRACT

Alpha Synuclein (α-Syn) is a protein implicated in mechanisms of neuronal degeneration in Parkinson's disease (PD). α-Syn is primarily a neuronal protein, however, its expression is found in various tumors including ovarian, colorectal and melanoma tumors. It has been hypothesized that neurodegeneration may share common mechanisms with oncogenesis. We tested whether α-Syn expression affects tumorigenesis of three types of tumors. Specifically, B16 melanoma, E0771 mammary gland adenocarcinoma and D122 Lewis lung carcinoma. For this aim, we utilized transgenic mice expression the human A53T α-Syn form. We found that the in vivo growth of B16 and E0771 but not D122 was enhanced in the A53T α-Syn mice. The effect on tumorigenesis was not detected in age-matched APP/PS1 mice, modeling Alzheimer's disease (AD), suggesting a specific effect for α-Syn-dependent neurodegeneration. Importantly, transgenic α-Syn expression was detected within the three tumor types. We further show uptake of exogenously added, purified α-Syn, by the cultured tumor cells. In accord, with the affected tumorigenesis in the young A53T α-Syn mice, over-expression of α-Syn in cultured B16 and E0771 cells enhanced proliferation, however, had no effect on the proliferation of D122 cells. Based on these results, we suggest that certain forms of α-Syn may selectively accelerate cellular mechanisms leading to cancer.


Subject(s)
Disease Models, Animal , Parkinson Disease/metabolism , Parkinson Disease/pathology , Precancerous Conditions/pathology , alpha-Synuclein/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Animals , Carcinoma, Lewis Lung , Cell Line, Tumor , Cell Proliferation , Female , Humans , Male , Melanoma, Experimental/metabolism , Melanoma, Experimental/pathology , Mice , Mice, Inbred C57BL , Precancerous Conditions/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...