Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-22270734

ABSTRACT

BackgroundTo partially immunize more persons against COVID-19 during a time of limited vaccine availability, Canadian public health officials recommended extending the vaccine dose interval and brand mixing. Impact on the antibody response among the older ambulatory population was unclear. MethodsDecentralized prospective cohort study with self-report of adverse events and collection of dried blood spots. Data is presented for 1193 (93%) of the 911 older (aged >70 years) and 375 younger (30-50 years) recruits. FindingsLocal and systemic reactivity rates were high but short-lived, particularly in the younger cohort and with mRNA-1273 vaccine. After a single COVID-19 vaccine, 84% younger but only 46% older participants had positive IgG antibodies to both spike protein and receptor binding domain (RBD) antigens, increasing to 100/98% with the second dose respectively. In multivariable linear regression model, lower normalized IgG RBD antibody ratios two weeks after the second dose were statistically associated with older age, male gender, cancer diagnosis, lower body weight, BNT162b2 relative to mRNA-1273 and longer dose intervals. Antibody ratios in both cohorts declined 12 weeks post second vaccine dose. InterpretationWe report success of a decentralized serology study. Antibody responses were higher in the younger than older cohort and were greater for those with at least one mRNA-1273 dose. The immunity threshold is unknown but correlations between binding and neutralizing antibodies are strongly positive. Trends with time and at breakthrough infection will inform vaccine booster strategies. FundingSupported by the Public Health Agency of Canada and the University Health Network Foundation.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-475409

ABSTRACT

The omicron variant of concern (VOC) of SARS-CoV-2 was first reported in November 2021 in Botswana and South Africa. Omicron has evolved multiple mutations within the spike protein and the receptor binding domain (RBD), raising concerns of increased antibody evasion. Here, we isolated infectious omicron from a clinical specimen obtained in Canada. The neutralizing activity of sera from 65 coronavirus disease (COVID-19) vaccine recipients and convalescent individuals against clinical isolates of ancestral SARS-CoV-2, beta, delta, and omicron VOCs was assessed. Convalescent sera from unvaccinated individuals infected by the ancestral virus during the first wave of COVID-19 in Canada (July, 2020) demonstrated reduced neutralization against beta and omicron VOCs. Convalescent sera from unvaccinated individuals infected by the delta variant (May-June, 2021) neutralized omicron to significantly lower levels compared to the delta variant. Sera from individuals that received three doses of the Pfizer or Moderna vaccines demonstrated reduced neutralization of the omicron variant relative to ancestral SARS-CoV-2. Sera from individuals that were naturally infected with ancestral SARS-CoV-2 and subsequently received two doses of the Pfizer vaccine induced significantly higher neutralizing antibody levels against ancestral virus and all VOCs. Importantly, infection alone, either with ancestral SARS-CoV-2 or the delta variant was not sufficient to induce high neutralizing antibody titers against omicron. This data will inform current booster vaccination strategies, and we highlight the need for additional studies to identify longevity of immunity against SARS-CoV-2 and optimal neutralizing antibody levels that are necessary to prevent infection and/or severe COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL
...