Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
1.
ACS Catal ; 14(5): 3287-3297, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38449527

ABSTRACT

Cyclohexanone oxime is an important precursor for Nylon-6 and is typically synthesized via the nucleophilic addition-elimination of hydroxylamine with cyclohexanone. Current technologies for hydroxylamine production are, however, not environment-friendly due to the requirement of harsh reaction conditions. Here, we report an electrochemical method for the one-pot synthesis of cyclohexanone oxime under ambient conditions with aqueous nitrate as the nitrogen source. A series of Zn-Cu alloy catalysts are developed to drive the electrochemical reduction of nitrate, where the hydroxylamine intermediate formed in the electroreduction process can undergo a chemical reaction with the cyclohexanone present in the electrolyte to produce the corresponding oxime. The best performance is achieved on a Zn93Cu7 electrocatalyst with a 97% yield and a 27% Faradaic efficiency for cyclohexanone oxime at 100 mA/cm2. By analyzing the catalytic activities/selectivities of the different Zn-Cu alloys and conducting in-depth mechanistic studies via in situ Raman spectroscopy and theoretical calculations, we demonstrate that the adsorption of nitrogen species plays a central role in catalytic performance. Overall, this work provides an attractive strategy to build the C-N bond in oxime and drive organic synthesis through electrochemical nitrate reduction, while highlighting the importance of controlling surface adsorption for product selectivity in electrosynthesis.

2.
Foods ; 13(5)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38472875

ABSTRACT

To better query regional sources of metal(loid) exposure in an under-communicated region, available scientific literature from 50 national universities (undergraduate and graduate theses and dissertations), peer-reviewed journals, and reports published in Spanish and English were synthesized with a focus on metal(loid) bioaccumulation in Peruvian food and medicinal products utilized locally. The study considered 16 metal(loid)s that are known to exert toxic impacts on humans (Hg, Al, Sb, As, Ba, Be, Cd, Cr, Sn, Ni, Ag, Pb, Se, Tl, Ti, and U). A total of 1907 individual analyses contained within 231 scientific publications largely conducted by Peruvian universities were analyzed. These analyses encompassed 239 reported species classified into five main food/medicinal groups-plants, fish, macroinvertebrates and mollusks, mammals, and "others" category. Our benchmark for comparison was the World Health Organization (Codex Alimentarius) standards. The organisms most frequently investigated included plants such as asparagus, corn, cacao, and rice; fish varieties like trout, tuna, and catfish; macroinvertebrates and mollusks including crab and shrimp; mammals such as alpaca, cow, chicken eggs, and milk; and other categories represented by propolis, honey, lichen, and edible frog. Bioaccumulation-related research increased from 2 to more than 25 publications per year between 2006 and 2022. The results indicate that Peruvian food and natural medicinal products can have dangerous levels of metal(loid)s, which can cause health problems for consumers. Many common and uncommon food/medicinal products and harmful metals identified in this analysis are not regulated on the WHO's advisory lists, suggesting the urgent need for stronger regulations to ensure public safety. In general, Cd and Pb are the metals that violated WHO standards the most, although commonly non-WHO regulated metals such as Hg, Al, As, Cr, and Ni are also a concern. Metal concentrations found in Peru are on many occasions much higher than what has been reported elsewhere. We conclude that determining the safety of food/medicinal products is challenging due to varying metal concentrations that are influenced not only by metal type but also geographical location. Given the scarcity of research findings in many regions of Peru, urgent attention is required to address this critical knowledge gap and implement effective regulatory measures to protect public health.

3.
Water Res ; 252: 121200, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38309061

ABSTRACT

The metalloids boron and arsenic are ubiquitous and difficult to remove during water treatment. As chemical pretreatment using strong base and oxidants can increase their rejection during membrane-based nanofiltration (NF), we examined a nature-based pretreatment approach using benthic photosynthetic processes inherent in a unique type of constructed wetland to assess whether analogous gains can be achieved without the need for exogenous chemical dosing. During peak photosynthesis, the pH of the overlying clear water column above a photosynthetic microbial mat (biomat) that naturally colonizes shallow, open water constructed wetlands climbs from circumneutral to approximately 10. This biological increase in pH was reproduced in a laboratory bioreactor and resulted in analogous increases in NF rejection of boron and arsenic that is comparable to chemical dosing. Rejection across the studied pH range was captured using a monoprotic speciation model. In addition to this mechanism, the biomat accelerated the oxidation of introduced arsenite through a combination of abiotic and biotic reactions. This resulted in increases in introduced arsenite rejection that eclipsed those achieved solely by pH. Capital, operation, and maintenance costs were used to benchmark the integration of this constructed wetland against chemical dosing for water pretreatment, manifesting long-term (sub-decadal) economic benefits for the wetland-based strategy in addition to social and environmental benefits. These results suggest that the integration of nature-based pretreatment approaches can increase the sustainability of membrane-based and potentially other engineered treatment approaches for challenging water contaminants.


Subject(s)
Arsenic , Arsenites , Water Pollutants, Chemical , Arsenic/analysis , Boron , Wetlands , Photosynthesis , Water Pollutants, Chemical/analysis
4.
Sci Total Environ ; 898: 165492, 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37453708

ABSTRACT

Artisanal and small-scale gold mining (ASGM) is the leading global source of anthropogenic mercury (Hg) release to the environment. Top-down mercury reduction efforts have had limited results, but a bottom-up embrace of cyanide (CN) processing could eventually displace mercury amalgamation for gold recovery. However, ASGM transitions to cyanidation nearly always include an overlap phase, with mercury amalgamation then cyanidation being used sequentially. This paper uses a transdisciplinary approach that combines natural and social sciences to develop a holistic picture of why mercury and cyanide converge in gold processing and potential impacts that may be worse than either practice in isolation. We show that socio-economic factors drive the comingling of mercury and cyanide practices in ASGM as much or more so than technical factors. The resultant Hg-CN complexes have been implicated in increasing the mobility of mercury, compared to elemental mercury used in Hg-only processing. To support future inquiry, we identify key knowledge gaps including the role of Hg-CN complexes in mercury oxidation, transport, and fate, and possible links to mercury methylation. The global extent and increase of mercury and cyanide processing in ASGM underscores the importance of further research. The immediacy of the problem also demands interim policy responses while research advances, though ultimately, the well-documented struggles of mercury reduction efforts in ASGM temper optimism about policy responses to the mercury-cyanide transition.

5.
Environ Sci Technol ; 57(18): 7240-7253, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37099683

ABSTRACT

Ammonia monooxygenase and analogous oxygenase enzymes contribute to pharmaceutical biotransformation in activated sludge. In this study, we hypothesized that methane monooxygenase can enhance pharmaceutical biotransformation within the benthic, diffuse periphytic sediments (i.e., "biomat") of a shallow, open-water constructed wetland. To test this hypothesis, we combined field-scale metatranscriptomics, porewater geochemistry, and methane gas fluxes to inform microcosms targeting methane monooxygenase activity and its potential role in pharmaceutical biotransformation. In the field, sulfamethoxazole concentrations decreased within surficial biomat layers where genes encoding for the particulate methane monooxygenase (pMMO) were transcribed by a novel methanotroph classified as Methylotetracoccus. Inhibition microcosms provided independent confirmation that methane oxidation was mediated by the pMMO. In these same incubations, sulfamethoxazole biotransformation was stimulated proportional to aerobic methane-oxidizing activity and exhibited negligible removal in the absence of methane, in the presence of methane and pMMO inhibitors, and under anoxia. Nitrate reduction was similarly enhanced under aerobic methane-oxidizing conditions with rates several times faster than for canonical denitrification. Collectively, our results provide convergent in situ and laboratory evidence that methane-oxidizing activity can enhance sulfamethoxazole biotransformation, with possible implications for the combined removal of nitrogen and trace organic contaminants in wetland sediments.


Subject(s)
Methane , Wetlands , Oxidation-Reduction , Minerals , Biotransformation
6.
MethodsX ; 10: 102074, 2023.
Article in English | MEDLINE | ID: mdl-36865651

ABSTRACT

Shallow, unit process open water wetlands harbor a benthic microbial mat capable of removing nutrients, pathogens, and pharmaceuticals at rates that rival or exceed those of more traditional systems. A deeper understanding of the treatment capabilities of this non-vegetated, nature-based system is currently hampered by experimentation limited to demonstration-scale field systems and static lab-based microcosms that integrate field-derived materials. This limits fundamental mechanistic knowledge, extrapolation to contaminants and concentrations not present at current field sites, operational optimization, and integration into holistic water treatment trains. Hence, we have developed stable, scalable, and tunable laboratory reactor analogs that offer the capability to manipulate variables such as influent rates, aqueous geochemistry, light duration, and light intensity gradations within a controlled laboratory environment. The design is composed of an experimentally adaptable set of parallel flow-through reactors and controls that can contain field-harvested photosynthetic microbial mats ("biomat") and could be adapted for analogous photosynthetically active sediments or microbial mats. The reactor system is contained within a framed laboratory cart that integrates programable LED photosynthetic spectrum lights. Peristaltic pumps are used to introduce specified growth media, environmentally derived, or synthetic waters at a constant rate, while a gravity-fed drain on the opposite end allows steady-state or temporally variable effluent to be monitored, collected, and analyzed. The design allows for dynamic customization based on experimental needs without confounding environmental pressures and can be easily adapted to study analogous aquatic, photosynthetically driven systems, particularly where biological processes are contained within benthos. The diel cycles of pH and dissolved oxygen (DO) are used as geochemical benchmarks for the interplay of photosynthetic and heterotrophic respiration and likeness to field systems. Unlike static microcosms, this flow-through system remains viable (based on pH and DO fluctuations) and has at present been maintained for more than a year with original field-based materials.•Lab-scale flow-through reactors enable controlled and accessible exploration of shallow, open water constructed wetland function and applications.•The footprint and operating parameters minimize resources and hazardous waste while allowing for hypothesis-driven experiments.•A parallel negative control reactor quantifies and minimizes experimental artifacts.

7.
Sci Total Environ ; 876: 162478, 2023 Jun 10.
Article in English | MEDLINE | ID: mdl-36871713

ABSTRACT

Nature-based solutions offer a sustainable alternative to labor and chemical intensive engineered treatment of metal-impaired waste streams. Shallow, unit process open water (UPOW) constructed wetlands represent a novel design where benthic photosynthetic microbial mats (biomat) coexist with sedimentary organic matter and inorganic (mineral) phases, creating an environment for multiple-phase interactions with soluble metals. To query the interplay of dissolved metals with inorganic and organic fractions, biomat was harvested from two distinct systems: the demonstration-scale UPOW within the Prado constructed wetlands complex ("Prado biomat", 88 % inorganic) and a smaller pilot-scale system ("Mines Park (MP) biomat", 48 % inorganic). Both biomats accumulated detectable background concentrations of metals of toxicological concern (Zn, Cu, Pb, and Ni) by assimilation from waters that did not exceed regulatory thresholds for these metals. Augmentation in laboratory microcosms with a mixture of these metals at ecotoxicologically relevant concentrations revealed a further capacity for metal removal (83-100 %). Experimental concentrations encapsulated the upper range of surface waters in the metal-impaired Tambo watershed in Peru, where a passive treatment technology such as this could be applied. Sequential extractions demonstrated that metal removal by mineral fractions is more important in Prado than MP biomat, possibly due to a higher proportion and mass of iron and other minerals from Prado-derived materials. Geochemical modeling using PHREEQC suggests that in addition to sorption/surface complexation of metals to mineral phases (modeled as iron (oxyhydr)oxides), diatom and bacterial functional groups (carboxyl, phosphoryl, and silanol) also play an important role in soluble metal removal. By comparing sequestered metal phases across these biomats with differing inorganic content, we propose that sorption/surface complexation and incorporation/assimilation of both inorganic and organic constituents of the biomat play a dominant role in metal removal potential by UPOW wetlands. This knowledge could be applied to passively treat metal impaired waters in analogous and remote regions.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Wetlands , Water , Minerals , Iron , Water Pollutants, Chemical/analysis
8.
J Magn Reson ; 347: 107361, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36599255

ABSTRACT

Transmit array spatial encoding (TRASE) is an MR imaging technique that achieves k-space encoding through the use of phase gradients in the RF transmit field. Without requiring B0 gradient fields, TRASE MRI can be performed using significantly cheaper bi-planar permanent magnets or Halbach arrays. For TRASE encoding with these magnets, the twisted solenoid has been demonstrated as the most efficient RF transmit coil; however, this specific geometry results in a long coil with a relatively short imaging volume. We introduce a new truncated design to increase the usable imaging volume relative to the coil length. Based on simulations of optimal parameters, a 200 mm long, 100 mm inner diameter coil pair was constructed with an imaging volume 100 mm in length and 80 mm in diameter. The coil pair was tested using an un-shimmed 2.84 MHz Halbach array. Results indicate the truncated design can create a similar imaging volume and quality to the untruncated version whilst significantly reducing the length of the coil by as much as a half.

9.
Environ Sci Technol ; 56(20): 14462-14477, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36197061

ABSTRACT

In shallow, open-water engineered wetlands, design parameters select for a photosynthetic microbial biomat capable of robust pharmaceutical biotransformation, yet the contributions of specific microbial processes remain unclear. Here, we combined genome-resolved metatranscriptomics and oxygen profiling of a field-scale biomat to inform laboratory inhibition microcosms amended with a suite of pharmaceuticals. Our analyses revealed a dynamic surficial layer harboring oxic-anoxic cycling and simultaneous photosynthetic, nitrifying, and denitrifying microbial transcription spanning nine bacterial phyla, with unbinned eukaryotic scaffolds suggesting a dominance of diatoms. In the laboratory, photosynthesis, nitrification, and denitrification were broadly decoupled by incubating oxic and anoxic microcosms in the presence and absence of light and nitrogen cycling enzyme inhibitors. Through combining microcosm inhibition data with field-scale metagenomics, we inferred microbial clades responsible for biotransformation associated with membrane-bound nitrate reductase activity (emtricitabine, trimethoprim, and atenolol), nitrous oxide reduction (trimethoprim), ammonium oxidation (trimethoprim and emtricitabine), and photosynthesis (metoprolol). Monitoring of transformation products of atenolol and emtricitabine confirmed that inhibition was specific to biotransformation and highlighted the value of oscillating redox environments for the further transformation of atenolol acid. Our findings shed light on microbial processes contributing to pharmaceutical biotransformation in open-water wetlands with implications for similar nature-based treatment systems.


Subject(s)
Ammonium Compounds , Wetlands , Atenolol , Biotransformation , Denitrification , Emtricitabine/metabolism , Metoprolol , Nitrate Reductases/metabolism , Nitrification , Nitrogen/metabolism , Nitrous Oxide , Oxygen , Pharmaceutical Preparations , Photosynthesis , Trimethoprim , Water
10.
Water Res X ; 15: 100144, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35542761

ABSTRACT

Changes in climate, season, and vegetation can alter organic export from watersheds. While an accepted tradeoff to protect public health, disinfection processes during drinking water treatment can adversely react with organic compounds to form disinfection byproducts (DBPs). By extension, DBP monitoring can yield insights into hydrobiogeochemical dynamics within watersheds and their implications for water resource management. In this study, we analyzed temporal trends from a water treatment facility that sources water from Coal Creek in Crested Butte, Colorado. These trends revealed a long-term increase in haloacetic acid and trihalomethane formation over the period of 2005-2020. Disproportionate export of dissolved organic carbon and formation of DBPs that exceeded maximum contaminant levels were consistently recorded in association with late spring freshet. Synoptic sampling of the creek in 2020 and 2021 identified a biogeochemical hotspot for organic carbon export in the upper domain of the watershed that contained a prominent fulvic acid-like fluorescent signature. DBP formation potential analyses from this domain yielded similar ratios of regulated DBP classes to those formed at the drinking water facility. Spectrometric qualitative analyses of pre and post-reacted waters with hypochlorite indicated lignin-like and condensed hydrocarbon-like molecules were the major reactive chemical classes during chlorine-based disinfection. This study demonstrates how drinking water quality archives combined with synoptic sampling and targeted analyses can be used to identify and understand export control points for dissolved organic matter. This approach could be applied to identify and characterize analogous watersheds where seasonal or climate-associated organic matter export challenge water treatment disinfection and by extension inform watershed management and drinking water treatment.

11.
PeerJ ; 9: e11926, 2021.
Article in English | MEDLINE | ID: mdl-34434657

ABSTRACT

Increased drought and temperatures associated with climate change have implications for ecosystem stress with risk for enhanced carbon release in sensitive biomes. Litter decomposition is a key component of biogeochemical cycling in terrestrial ecosystems, but questions remain regarding the local response of decomposition processes to climate change. This is particularly complex in mountain ecosystems where the variable nature of the slope, aspect, soil type, and snowmelt dynamics play a role. Hence, the goal of this study was to determine the role of elevation, soil type, seasonal shifts in soil moisture, and snowmelt timing on litter decomposition processes. Experimental plots containing replicate deployments of harvested lodgepole and spruce needle litter alongside needle-free controls were established in open meadows at three elevations ranging from 2,800-3,500 m in Crested Butte, Colorado. Soil biogeochemistry variables including gas flux, porewater chemistry, and microbial ecology were monitored over three climatically variable years that shifted from high monsoon rains to drought. Results indicated that elevation and soil type influenced baseline soil biogeochemical indicators; however, needle mass loss and chemical composition were consistent across the 700 m elevation gradient. Rates of gas flux were analogously consistent across a 300 m elevation gradient. The additional variable of early snowmelt by 2-3 weeks had little impact on needle chemistry, microbial composition and gas flux; however, it did result in increased dissolved organic carbon in lodgepole porewater collections suggesting a potential for aqueous export. In contrast to elevation, needle presence and seasonal variability of soil moisture and temperature both played significant roles in soil carbon fluxes. During a pronounced period of lower moisture and higher temperatures, bacterial community diversity increased across elevation with new members supplanting more dominant taxa. Microbial ecological resilience was demonstrated with a return to pre-drought structure and abundance after snowmelt rewetting the following year. These results show similar decomposition processes across a 700 m elevation gradient and reveal the sensitivity but resilience of soil microbial ecology to low moisture conditions.

12.
Environ Sci Process Impacts ; 22(10): 2058-2069, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-33084698

ABSTRACT

Water infiltration into the subsurface can result in pronounced biogeochemical depth gradients. In this study, we assess metabolic potential and properties of the subsurface microbiome during water infiltration by analyzing sediments from spatially-segmented columns. Past work in these laboratory set-ups demonstrated that removal efficiencies of trace organic pollutants were enhanced by limited availability of biodegradable dissolved organic carbon (BDOC) associated with higher humic ratios and deeper sediment regions. Distinct differences were observed in the microbial community when contrasting shallow versus deeper profile sediments. Metagenomic analyses revealed that shallow sediments contained an enriched potential for bacterial growth and division processes. In contrast, deeper sediments harbored a significant increase in genes associated with the metabolism of secondary metabolites and the biotransformation of xenobiotic water pollutants. Metatranscripts further supported this trend, with increased potential for metabolic attributes associated with the biotransformation of xenobiotics and antibiotic resistance within deeper sediments. Furthermore, increasing ratios of humics in feed solutions correlated to enhanced expression of genes associated with xenobiotic biodegradation. These results provide genetic support for the interplay of dissolved organic carbon limitation and enhanced trace organic biotransformation by the subsurface microbiome.


Subject(s)
Carbon , Genetics, Microbial , Biodegradation, Environmental , Biotransformation , Geologic Sediments , Water Microbiology
13.
Magn Reson Imaging ; 74: 74-83, 2020 12.
Article in English | MEDLINE | ID: mdl-32926994

ABSTRACT

Transmit Array Spatial Encoding (TRASE) is a novel MRI technique that encodes spatial information by introducing phase gradients in the transmit RF (B1) magnetic field. Since TRASE relies on the use of multiple RF fields (B1 fields with different phase gradients) for k-space traversal, a TRASE pulse sequence requires RF pulses that are produced by switching between the transmit coils (B1 fields). However, interactions among the transmit RF coils can cause un-driven coils to produce unwanted B1 fields that impair the spatial encoding. Therefore, TRASE is sensitive to B1 field perturbations arising from inductive coupling among the RF transmit coils and any B1 field isolation (coil decoupling) technique requires an understanding of the effects of the B1 field interactions. The purpose of this study was to investigate the effects of B1 field coupling using Bloch equation based simulations and to determine the acceptable level of B1 field interactions for 2D TRASE imaging. The simulations show that 2D TRASE MRI (using a 3-coil setup) displays ideal performance for pairwise coupling constant lower than k = 0.01 while having acceptable performance up to k = 0.1. This translates into S12 measurements of range ~(- 50 dB to -30 dB) required for successful 2D TRASE MRI in this study. This result is of crucial importance for designers of practical TRASE transmit array systems.


Subject(s)
Computer Simulation , Magnetic Resonance Imaging/methods , Equipment Design , Magnetic Fields , Magnetic Resonance Imaging/instrumentation , Phantoms, Imaging , Radio Waves
14.
Iperception ; 11(4): 2041669520953457, 2020.
Article in English | MEDLINE | ID: mdl-32922717

ABSTRACT

No formal studies have reported how glasses influence age perception, except for a London Vision Clinic survey that found that people over 45 look 5 or more years older when wearing eyeglasses. To investigate the effect of eyeglasses and sunglasses on age perception while controlling for age and interpersonal differences, we digitally manipulated the photographs of faces of 50 young adults, to create two age conditions (young and old) and three eyewear conditions (no glasses, eyeglasses, and sunglasses). Participants then estimated the age of the faces, displayed in random order. Contrary to the generally accepted beliefs that wearing eyeglasses makes you look older and wearing sunglasses make you look younger, our results suggest that the effect of glasses on age perception is rather small.

15.
PeerJ ; 8: e9538, 2020.
Article in English | MEDLINE | ID: mdl-32742804

ABSTRACT

This study investigates the isolated decomposition of spruce and lodgepole conifer needles to enhance our understanding of how needle litter impacts near-surface terrestrial biogeochemical processes. Harvested needles were exported to a subalpine meadow to enable a discrete analysis of the decomposition processes over 2 years. Initial chemistry revealed the lodgepole needles to be less recalcitrant with a lower carbon to nitrogen (C:N) ratio. Total C and N fundamentally shifted within needle species over time with decreased C:N ratios for spruce and increased ratios for lodgepole. Differences in chemistry correlated with CO2 production and soil microbial communities. The most pronounced trends were associated with lodgepole needles in comparison to the spruce and needle-free controls. Increased organic carbon and nitrogen concentrations associated with needle presence in soil extractions further corroborate the results with clear biogeochemical signatures in association with needle chemistry. Interestingly, no clear differentiation was observed as a function of bark beetle impacted spruce needles vs those derived from healthy spruce trees despite initial differences in needle chemistry. These results reveal that the inherent chemistry associated with tree species has a greater impact on soil biogeochemical signatures during isolated needle decomposition. By extension, biogeochemical shifts associated with bark beetle infestation are likely driven more by changes such as the cessation of rhizospheric processes than by needle litter decomposition.

16.
Bio Protoc ; 10(6): e3557, 2020 Mar 20.
Article in English | MEDLINE | ID: mdl-33659529

ABSTRACT

Field studies that simulate the effects of climate change are important for a predictive understanding of ecosystem responses to a changing environment. Among many concerns, regional warming can result in advanced timing of spring snowmelt in snowpack dependent ecosystems, which could lead to longer snow-free periods and drier summer soils. Past studies investigating these impacts of climate change have manipulated snowmelt with a variety of techniques that include manual snowpack alteration with a shovel, infrared radiation, black sand and fabric covers. Within these studies however, sufficient documentation of methods is limited, which can make experimental reproduction difficult. Here, we outline a detailed plot-scale protocol that utilizes a permeable black geotextile fabric deployed on top of an isothermal spring snowpack to induce advanced snowmelt. The method offers a reliable and cost-effective approach to induce snowmelt by passively increasing solar radiation absorption at the snow surface. In addition, control configurations with no snowpack manipulation are paired adjacent to the induced snowmelt plot for experimental comparison. Past and ongoing deployments in Colorado subalpine ecosystems indicate that this approach can accelerate snowmelt by 14-23 days, effectively mimicking snowmelt timing at lower elevations. This protocol can be applied to a variety of studies to understand the hydrological, ecological, and geochemical impacts of regional warming in snowpack dependent ecosystems.

17.
Magn Reson Med ; 83(4): 1484-1498, 2020 04.
Article in English | MEDLINE | ID: mdl-31556163

ABSTRACT

PURPOSE: TRASE uses phase gradients in the RF transmit field to encode MRI data. A highly efficient twisted solenoid coil was proposed recently for TRASE imaging for transverse B0 geometries. This novel coil can be rotated to generate a phase gradient in any transverse direction, therefore, combining two such coils would double k-space coverage for single-axis encoding, resulting in higher spatial resolution. However, the strong inductive coupling between a pair of coaxial twisted solenoids must be overcome. METHODS: Here, we demonstrate that two concentric twisted solenoids, designed using previously described Biot-Savart calculations, can be geometrically decoupled by attaching to each a regular solenoid in series. The regular solenoid geometry resulting in minimization of mutual inductance was determined from simulations using the FastHenry2 tool. The effects on TRASE encoding performance due to the regular solenoids were assessed from simulations and experiments. RESULTS: The maximum resulting B1 magnitude and phase distortions were 3.7% and 4.6∘ , while a good isolation S12=-17.5 dB between the coil pair was obtained. TRASE experiments confirmed the double k-space coverage, and achieved a rapid spin echo train with 128 k-space points collected within 80 ms, allowing short T2 samples to be accurately imaged. CONCLUSIONS: This study demonstrates that a pair of twisted solenoid phase gradient RF coils can be geometrically decoupled. Advantages over active PIN diode decoupling include faster switching, lower hardware complexity, and scalability.


Subject(s)
Magnetic Resonance Imaging , Radio Waves , Equipment Design , Phantoms, Imaging
18.
Chemosphere ; 241: 125116, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31683429

ABSTRACT

Oscillating cycles of dewatering (termed drying) and rewetting during managed aquifer recharge (MAR) are used to maintain infiltration rates and could also exert an influence on subsurface microbial structure and respiratory processes. Despite this practice, little knowledge is available about changes to microbial community structure and trace organic chemical biodegradation potential in MAR systems under these conditions. A biologically active two-dimensional (2D) synthetic MAR system equipped with automated sensors (temperature, water pressure, conductivity, soil moisture, oxidation-reduction potential) and embedded water and soil sampling ports was used to test and model these important subsurface processes at the meso-scale. The fate and transport of the antiepileptic drug carbamazepine, the antibiotics sulfamethoxazole and trimethoprim, and the flame retardant tris (2-chloroethyl) phosphate were simulated using the finite element analysis model, FEFLOW. All of these compounds exhibit moderate to poor biodegradability in MAR systems. Within the operational MAR scenario tested, three episodic drying cycles spanning between 18 and 24 days were conducted over a period of 184 days. Notably, cessation of flow and partial dewatering of the 2D synthetic aquifer during dry cycles caused no measurable decrease in soil moisture content beyond the near-surface layer. The episodic flow introduction and dewatering cycles in turn had little impact on overall trace organic chemical biotransformation behavior and soil microbial community structure. However, spatial differences in oxidation-reduction potential and soil moisture were both identified as significant environmental predictors for microbial community structure in the 2D synthetic aquifer.


Subject(s)
Biodegradation, Environmental , Desiccation/methods , Groundwater/chemistry , Water Pollutants, Chemical/chemistry , Wettability , Biotransformation , Geological Phenomena , Groundwater/microbiology , Microbiota , Organic Chemicals/analysis , Organic Chemicals/chemistry , Oxidation-Reduction , Soil Microbiology , Water Pollutants, Chemical/analysis
19.
MAGMA ; 32(6): 679-692, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31218552

ABSTRACT

OBJECTIVE: A radiofrequency (RF) power amplifier is an essential component of any magnetic resonance imaging (MRI) system. Unfortunately, no commercial amplifier exists to fulfill the needs of the transmit array spatial encoding (TRASE) MRI technique, requiring high duty cycle, high RF output power and independently controlled multi-channel capability. Thus, an RF amplifier for TRASE MRI is needed. MATERIALS AND METHODS: A dual-channel RF power amplifier dedicated for TRASE at 0.22 T (9.27 MHz) was designed and constructed using commercially available components. The amplifier was tested on the bench and used a 0.22 T MRI system with a twisted solenoid and saddle RF coil combination capable of a single-axis TRASE. RESULTS: The amplifier is capable of sequential, dual-channel operation up to 50% duty cycle, 1 kW peak output and highly stable 100 µs RF pulse trains. High spatial resolution one-dimensional TRASE was obtained with the power amplifier to demonstrate its capability. CONCLUSION: The constructed amplifier is the first prototype that meets the requirements of TRASE rectifying limitations of duty cycle and timing presented by commercial RF amplifiers. The amplifier makes possible future high resolution in vivo TRASE MRI.


Subject(s)
Image Processing, Computer-Assisted/instrumentation , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/instrumentation , Radio Waves , Algorithms , Amplifiers, Electronic , Electronics/instrumentation , Equipment Design , Image Enhancement/methods , Linear Models , Oscillometry/methods , Phantoms, Imaging , Reproducibility of Results
20.
J Magn Reson ; 305: 77-88, 2019 08.
Article in English | MEDLINE | ID: mdl-31229756

ABSTRACT

Transmit Array Spatial Encoding (TRASE) is an MRI technique that uses radio-frequency (RF) magnetic field (B1) phase gradients for spatial encoding. A TRASE pulse sequence consists of a long echo train in which each echo samples a different k-space point. Due to the need for accurate refocusing, TRASE imaging performance depends on |B1| homogeneity. Although the CPMG echo train is often relied on to provide immunity against B1 flip angle errors, this does not apply to TRASE echo trains. Due to the spatially dependent B1 phases involved in TRASE imaging, the CPMG condition, where all spins flip about the y-axis in the rotating frame, can only be achieved at one single location within the sample. Moreover, CPMG only preserves one component of the transverse magnetization, the y-component, whereas TRASE requires both components to be retained. Here we investigate the performance of a set of variants of a 1-dimensional (1D) TRASE sequence under conditions of |B1| errors. We varied the B1 transmit pulse RF waveform phases in an effort to optimize the TRASE imaging point spread function (PSF). The performance of 256 sequence variants, including those previously reported in the literature was studied. Both Bloch equation simulations and experimental confirmations were completed. Off-resonance (B0 inhomogeneity) effects were not considered so that the effects of B1 inhomogeneity alone could be understood. Results show that, using optimum transmit pulse phases, high quality image encoding is achievable over ∼90% of the Nyquist field-of-view (FOV) for a practically realizable variation in B1 amplitude (Δ|B1|⩽±11%). This improves significantly upon the performance of a previously-reported sequence which generated ∼75% usable FOV within the Nyquist FOV.

SELECTION OF CITATIONS
SEARCH DETAIL
...