Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Neuropathol Commun ; 10(1): 127, 2022 08 31.
Article in English | MEDLINE | ID: mdl-36045406

ABSTRACT

α-Dystrobrevin (α-DB) is a major component of the dystrophin-associated protein complex (DAPC). Knockout (KO) of α-DB in the brain is associated with astrocytic abnormalities and loss of neuronal GABA receptor clustering. Mutations in DAPC proteins are associated with altered dopamine signaling and cognitive and psychiatric disorders, including schizophrenia. This study tested the hypothesis that motivation and associated underlying biological pathways are altered in the absence of α-DB expression. Male wildtype and α-DB KO mice were tested for measures of motivation, executive function and extinction in the rodent touchscreen apparatus. Subsequently, brain tissues were evaluated for mRNA and/or protein levels of dysbindin-1, dopamine transporter and receptor 1 and 2, mu opioid receptor 1 (mOR1) and cannabinoid receptor 1 (CB1). α-DB KO mice had significantly increased motivation for the appetitive reward, while measures of executive function and extinction were unaffected. No differences were observed between wildtype and KO animals on mRNA levels of dysbindin-1 or any of the dopamine markers. mRNA levels of mOR1were significantly decreased in the caudate-putamen and nucleus accumbens of α-DB KO compared to WT animals, but protein levels were unaltered. However, CB1 protein levels were significantly increased in the prefrontal cortex and decreased in the nucleus accumbens of α-DB KO mice. Triple-labelling immunohistochemistry confirmed that changes in CB1 were not specific to astrocytes. These results highlight a novel role for α-DB in the regulation of appetitive motivation that may have implications for other behaviours that involve the dopaminergic and endocannabinoid systems.


Subject(s)
Dopamine , Dystrophin-Associated Proteins , Motivation , Receptors, Cannabinoid , Animals , Brain/metabolism , Dopamine/metabolism , Dysbindin/metabolism , Dystrophin-Associated Proteins/genetics , Male , Mice , Mice, Knockout , RNA, Messenger/metabolism , Receptors, Cannabinoid/genetics , Receptors, Cannabinoid/metabolism , Reward
2.
Acta Neuropathol ; 135(3): 363-385, 2018 03.
Article in English | MEDLINE | ID: mdl-29368214

ABSTRACT

Meninges that surround the CNS consist of an outer fibrous sheet of dura mater (pachymeninx) that is also the inner periosteum of the skull. Underlying the dura are the arachnoid and pia mater (leptomeninges) that form the boundaries of the subarachnoid space. In this review we (1) examine the development of leptomeninges and their role as barriers and facilitators in the foetal CNS. There are two separate CSF systems during early foetal life, inner CSF in the ventricles and outer CSF in the subarachnoid space. As the foramina of Magendi and Luschka develop, one continuous CSF system evolves. Due to the lack of arachnoid granulations during foetal life, it is most likely that CSF is eliminated by lymphatic drainage pathways passing through the cribriform plate and nasal submucosa. (2) We then review the fine structure of the adult human and rodent leptomeninges to establish their roles as barriers and facilitators for the movement of fluid, cells and pathogens. Leptomeningeal cells line CSF spaces, including arachnoid granulations and lymphatic drainage pathways, and separate elements of extracellular matrix from the CSF. The leptomeningeal lining facilitates the traffic of inflammatory cells within CSF but also allows attachment of bacteria such as Neisseria meningitidis and of tumour cells as CSF metastases. Single layers of leptomeningeal cells extend into the brain closely associated with the walls of arteries so that there are no perivascular spaces around arteries in the cerebral cortex. Perivascular spaces surrounding arteries in the white matter and basal ganglia relate to their two encompassing layers of leptomeninges. (3) Finally we examine the roles of ligands expressed by leptomeningeal cells for the attachment of inflammatory cells, bacteria and tumour cells as understanding these roles may aid the design of therapeutic strategies to manage developmental, autoimmune, infectious and neoplastic diseases relating to the CSF, the leptomeninges and the associated CNS.


Subject(s)
Meninges/cytology , Meninges/metabolism , Animals , Humans , Meninges/blood supply , Meninges/microbiology , Rodentia
3.
Clin Sci (Lond) ; 131(10): 1001-1013, 2017 May 01.
Article in English | MEDLINE | ID: mdl-28348005

ABSTRACT

Non-amyloid cerebral small vessel disease (CSVD) and cerebral amyloid angiopathy (CAA) may be interrelated through the damaged basement membranes (BMs) and extracellular matrix changes of small vessels, resulting in a failure of ß-amyloid (Aß) transport and degradation. We analyzed BM changes and the pattern of deposition of Aß in the walls of blood vessels in spontaneously hypertensive stroke-prone rats (SHRSP), a non-transgenic CSVD model. In 45 SHRSP and 38 Wistar rats aged 18 to 32 weeks: (i) the percentage area immunostained for vascular collagen IV and laminin was quantified; (ii) the capillary BM thickness as well as endothelial and pericyte pathological changes were analysed using transmission electron microscopy (TEM); and (iii) the presence of vascular Aß was assessed. Compared with controls, SHRSP exhibited a significantly higher percentage area immunostained with collagen IV in the striatum and thalamus. SHRSP also revealed an age-dependent increase of the capillary BM thickness and of endothelial vacuoles (caveolae) within subcortical regions. Endogenous Aß deposits in the walls of small blood vessels were observed in the cortex (with the highest incidence found within fronto-parietal areas), striatum, thalamus and hippocampus. Vascular ß-amyloid accumulations were frequently detected at sites of small vessel wall damage. Our data demonstrate changes in the expression of collagen IV and of the ultrastructure of BMs in the small vessels of SHRSP. Alterations are accompanied by vascular deposits of endogenous Aß. Impaired ß-amyloid clearance along perivascular and endothelial pathways and failure of extracellular Aß degradation may be the key mechanisms connecting non-amyloid CSVD and CAA.


Subject(s)
Amyloid beta-Peptides/metabolism , Basement Membrane/metabolism , Cerebral Small Vessel Diseases/metabolism , Microvessels/metabolism , Animals , Cerebral Amyloid Angiopathy/metabolism , Disease Models, Animal , Humans , Rats , Rats, Inbred SHR , Rats, Wistar
4.
Aging Cell ; 12(2): 224-36, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23413811

ABSTRACT

Development of cerebral amyloid angiopathy (CAA) and Alzheimer's disease (AD) is associated with failure of elimination of amyloid-ß (Aß) from the brain along perivascular basement membranes that form the pathways for drainage of interstitial fluid and solutes from the brain. In transgenic APP mouse models of AD, the severity of cerebral amyloid angiopathy is greater in the cerebral cortex and hippocampus, intermediate in the thalamus, and least in the striatum. In this study we test the hypothesis that age-related regional variation in (1) vascular basement membranes and (2) perivascular drainage of Aß contribute to the different regional patterns of CAA in the mouse brain. Quantitative electron microscopy of the brains of 2-, 7-, and 23-month-old mice revealed significant age-related thickening of capillary basement membranes in cerebral cortex, hippocampus, and thalamus, but not in the striatum. Results from Western blotting and immunocytochemistry experiments showed a significant reduction in collagen IV in the cortex and hippocampus with age and a reduction in laminin and nidogen 2 in the cortex and striatum. Injection of soluble Aß into the hippocampus or thalamus showed an age-related reduction in perivascular drainage from the hippocampus but not from the thalamus. The results of the study suggest that changes in vascular basement membranes and perivascular drainage with age differ between brain regions, in the mouse, in a manner that may help to explain the differential deposition of Aß in the brain in AD and may facilitate development of improved therapeutic strategies to remove Aß from the brain in AD.


Subject(s)
Aging/pathology , Amyloid beta-Peptides/metabolism , Basement Membrane/pathology , Cerebral Amyloid Angiopathy/pathology , Aging/metabolism , Animals , Basement Membrane/metabolism , Calcium-Binding Proteins , Capillaries/metabolism , Capillaries/pathology , Cell Adhesion Molecules , Cerebral Amyloid Angiopathy/metabolism , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Collagen Type IV/metabolism , Corpus Striatum/metabolism , Corpus Striatum/pathology , Extracellular Fluid/metabolism , Female , Hippocampus/metabolism , Hippocampus/pathology , Humans , Laminin/metabolism , Male , Membrane Glycoproteins/metabolism , Mice , Mice, Transgenic , Organ Specificity , Thalamus/metabolism , Thalamus/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...