Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
iScience ; 26(12): 108413, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38058312

ABSTRACT

Temporally controlling Cre recombination through tamoxifen (Tam) induction has many advantages for biomedical research. Most studies report early post-natal/juvenile (<2 m.o.) Tam induction, but age-related neurodegeneration and aging studies can require Cre induction in older mice (>12 m.o.). While anecdotally reported as problematic, there are no published comparisons of Tam-mediated Cre induction at early and late ages. Here, microglial-specific Cx3cr1creERT2 mice were crossed to a floxed NuTRAP reporter to compare Cre induction at early (3-6 m.o.) and late (20 m.o.) ages. Specificity and efficiency of microglial labeling at 21-22 m.o. were identical in mice induced with Tam at early and late ages. Age-related microglial translatomic changes were also similar regardless of Tam induction age. Each Cre and flox mouse line should be independently validated, however, these findings demonstrate that Tam-mediated Cre induction can be performed even into older mouse ages and should be generalizable to other inducible Cre models.

2.
bioRxiv ; 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38014232

ABSTRACT

Alzheimer's disease (AD) patients exhibit neuropsychiatric symptoms that extend beyond classical cognitive deficits, suggesting involvement of subcortical areas. Here, we investigated the role of midbrain dopamine (DA) neurons in AD using the amyloid + tau-driven 3xTg-AD mouse model. We found deficits in reward-based operant learning in AD mice, suggesting possible VTA DA neuron dysregulation. Physiological assessment revealed hyperexcitability and disrupted firing in DA neurons caused by reduced activity of small-conductance calcium-activated potassium (SK) channels. RNA sequencing from contents of single patch-clamped DA neurons (Patch-seq) identified up-regulation of the SK channel modulator casein kinase 2 (CK2). Pharmacological inhibition of CK2 restored SK channel activity and normal firing patterns in 3xTg-AD mice. These findings shed light on a complex interplay between neuropsychiatric symptoms and subcortical circuits in AD, paving the way for novel treatment strategies.

3.
bioRxiv ; 2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37781585

ABSTRACT

Temporally controlling cre recombination through tamoxifen (Tam) induction has many advantages for biomedical research. Most studies report Tam induction at early post-natal/juvenile (<2 m.o.) mouse ages, but age-related neurodegeneration and aging studies can require cre induction in older mice (>12 m.o.). While anecdotally reported as problematic, there are no published comparisons of Tam mediated cre induction at early and late ages. Here, microglial-specific Cx3cr1 creERT 2 mice were crossed to a floxed NuTRAP reporter to compare cre induction at early (3-6 m.o.) and late (20 m.o.) ages. Specificity and efficiency of microglial labeling at 21-22 m.o. were identical in mice induced with Tam at 3-6 m.o. or 20 m.o. of age. Age-related microglial translatomic changes were also similar regardless of Tam induction age. Each cre and flox mouse line should be validated independently, however, these findings demonstrate that Tam-mediated cre induction can be performed even into older mouse ages.

5.
Geroscience ; 45(5): 3019-3043, 2023 10.
Article in English | MEDLINE | ID: mdl-37393197

ABSTRACT

Major histocompatibility complex I (MHC-I) CNS cellular localization and function is still being determined after previously being thought to be absent from the brain. MHC-I expression has been reported to increase with brain aging in mouse, rat, and human whole tissue analyses, but the cellular localization was undetermined. Neuronal MHC-I is proposed to regulate developmental synapse elimination and tau pathology in Alzheimer's disease (AD). Here, we report that across newly generated and publicly available ribosomal profiling, cell sorting, and single-cell data, microglia are the primary source of classical and non-classical MHC-I in mice and humans. Translating ribosome affinity purification-qPCR analysis of 3-6- and 18-22-month-old (m.o.) mice revealed significant age-related microglial induction of MHC-I pathway genes B2m, H2-D1, H2-K1, H2-M3, H2-Q6, and Tap1 but not in astrocytes and neurons. Across a timecourse (12-23 m.o.), microglial MHC-I gradually increased until 21 m.o. and then accelerated. MHC-I protein was enriched in microglia and increased with aging. Microglial expression, and absence in astrocytes and neurons, of MHC-I-binding leukocyte immunoglobulin-like (Lilrs) and paired immunoglobin-like type 2 (Pilrs) receptor families could enable cell -autonomous MHC-I signaling and increased with aging in mice and humans. Increased microglial MHC-I, Lilrs, and Pilrs were observed in multiple AD mouse models and human AD data across methods and studies. MHC-I expression correlated with p16INK4A, suggesting an association with cellular senescence. Conserved induction of MHC-I, Lilrs, and Pilrs with aging and AD opens the possibility of cell-autonomous MHC-I signaling to regulate microglial reactivation with aging and neurodegeneration.


Subject(s)
Alzheimer Disease , Microglia , Humans , Mice , Rats , Animals , Microglia/pathology , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Major Histocompatibility Complex , Aging/physiology , Brain/metabolism
6.
bioRxiv ; 2023 Jun 02.
Article in English | MEDLINE | ID: mdl-36945372

ABSTRACT

Major Histocompatibility Complex I (MHC-I) CNS cellular localization and function is still being determined after previously being thought to be absent from the brain. MHC-I expression has been reported to increase with brain aging in mouse, rat, and human whole tissue analyses but the cellular localization was undetermined. Neuronal MHC-I is proposed to regulate developmental synapse elimination and tau pathology in Alzheimer's disease (AD). Here we report that across newly generated and publicly available ribosomal profiling, cell sorting, and single-cell data, microglia are the primary source of classical and non-classical MHC-I in mice and humans. Translating Ribosome Affinity Purification-qPCR analysis of 3-6 and 18-22 month old (m.o.) mice revealed significant age-related microglial induction of MHC-I pathway genes B2m , H2-D1 , H2-K1 , H2-M3 , H2-Q6 , and Tap1 but not in astrocytes and neurons. Across a timecourse (12-23 m.o.), microglial MHC-I gradually increased until 21 m.o. and then accelerated. MHC-I protein was enriched in microglia and increased with aging. Microglial expression, and absence in astrocytes and neurons, of MHC-I binding Leukocyte Immunoglobulin-like (Lilrs) and Paired immunoglobin-like type 2 (Pilrs) receptor families could enable cell-autonomous MHC-I signaling and increased with aging in mice and humans. Increased microglial MHC-I, Lilrs, and Pilrs were observed in multiple AD mouse models and human AD data across methods and studies. MHC-I expression correlated with p16INK4A , suggesting an association with cellular senescence. Conserved induction of MHC-I, Lilrs, and Pilrs with aging and AD opens the possibility of cell-autonomous MHC-I signaling to regulate microglial reactivation with aging and neurodegeneration.

7.
Physiol Behav ; 265: 114176, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36965574

ABSTRACT

Obesity is a crisis in the United States, producing many co-morbid diseases that can drastically decrease quality of life. While diet is a major focus for therapeutic intervention, the need to understand underlying appetitive neurocircuitry persists. Proopiomelanocortin (POMC) peptides are well-known for their anorexigenic activity, but also mediate reward and learning. The nucleus accumbens (NAcc) is best known for its role in reward-based learning, but the contribution of POMC projections to NAcc on feeding are controversial since the two major POMC-derived peptides (ß-endorphin and α-MSH) have opposite effects on food intake. Our objective was to determine the effect of stimulating POMC projections in the NAcc on acquisition and maintenance of operant self-administration of a palatable food. Adult POMCCre mice were microinjected into the NAcc with a Cre-dependent retrograde adeno-associated viral vector expressing Gq Designer Receptors Exclusively Activated by Designer Drugs (DREADDs). Mice were trained to self-administer palatable 20-mg pellets in daily operant sessions. Acquisition of self-administration (fixed ratio 30) and baseline self-administration were measured in daily sessions, with mice receiving injections of either JHU37152 (DREADD agonist) or saline (i.p.) 15 min prior to the sessions. POMC neuron stimulation (JHU injection) before training sessions produced a significant increase in rate of acquisition and accuracy compared to the saline treated group, with no significant effect on rewards earned. Removal of POMC neuron stimulation before sessions initially reduced consumption with a gradual increase in responding for reinforcer over 3 days of saline injections. Reinstatement of POMC neuron stimulation (JHU) before the session resulted in a significant decrease in responding and rewards earned. These results suggest a complex role of POMC peptides within the NAcc that increase reward learning for a novel palatable food while decreasing consumption of the reinforcer following experience with it.


Subject(s)
Nucleus Accumbens , Pro-Opiomelanocortin , Mice , Animals , Quality of Life , Conditioning, Operant , beta-Endorphin
8.
Neuropeptides ; 96: 102289, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36155088

ABSTRACT

RATIONALE: Obesity is a major health problem worldwide. An understanding of the factors that drive feeding behaviors is key to the development of pharmaceuticals to decrease appetite and consumption. Proopiomelanocortin (POMC), the melanocortin peptide precursor, is essential in the regulation of body weight and ingestive behaviors. Deletion of POMC or impairment of melanocortin signaling in the brain results in hyperphagic obesity. Neurons in the hypothalamic arcuate nucleus produce POMC and project to many areas including the nucleus accumbens (NAcc), which is well established in the rewarding and reinforcing effects of both food and drugs of abuse. OBJECTIVE: These studies sought to determine the role of melanocortins in the NAcc on consumption of and motivation to obtain access to standard rodent chow. METHODS: Male, C57BL/6J mice were microinjected bilaterally into the NAcc (100 nl/side) with the melanocortin receptor 3/4 agonist melanotan-II (MT-II; 0.1, 0.3, and 1 nmol), and ingestive behaviors were examined in both home cage and operant food self-administration experiments. In addition, the ability of MT-II in the NAcc to produce aversive properties or affect metabolic rate were tested. RESULTS: MT-II injected into the NAcc significantly decreased consumption in both home cage and operant paradigms, and furthermore decreased appetitive responding to gain access to food. There was no development of conditioned taste avoidance or change in metabolic parameters following anorexic doses of MT-II. CONCLUSIONS: MT-II in the NAcc decreased both the motivation to eat and the amount of food consumed without inducing an aversive state or affecting metabolic rate, suggesting a role for melanocortin signaling in the NAcc that is selective for appetite and satiety without affecting metabolism or producing an aversive state.


Subject(s)
Nucleus Accumbens , Peptides, Cyclic , Pro-Opiomelanocortin , Receptor, Melanocortin, Type 4 , alpha-MSH , Animals , Male , Mice , Melanocortins/metabolism , Mice, Inbred C57BL , Obesity , Pro-Opiomelanocortin/metabolism , Receptor, Melanocortin, Type 4/agonists , Peptides, Cyclic/pharmacology , alpha-MSH/analogs & derivatives , alpha-MSH/pharmacology
9.
Addict Biol ; 27(2): e13120, 2022 03.
Article in English | MEDLINE | ID: mdl-34825430

ABSTRACT

Dopamine neurons in the substantia nigra (SN) and ventral tegmental area (VTA) play a central role in the reinforcing properties of abused drugs including methamphetamine and cocaine. Chronic effects of psychostimulants in the SN/VTA also involve non-dopaminergic transmitters, including glutamate and the stress-related peptide corticotropin-releasing factor (CRF). In the SN/VTA, astrocytes express a variety of membrane-bound neurotransmitter receptors and transporters that influence neurotransmission. CRF receptor type 2 (CRF2) activity in the VTA is important for stress-induced relapse and drug-seeking behaviour, but the localization of its effects is incompletely understood. Here, we first identified CRF2 transcript in astrocytes of the SN/VTA using RNA-Seq in Aldh1l1;NuTRAP mice and confirmed it using in situ hybridization (RNAscope) in wild-type mice. We then used immunofluorescence to quantify the astrocytic marker protein S100ß, glial-specific glutamate/aspartate transporter GLAST, and CRF2 in the SN/VTA following 12 days of treatment (i.p.) with methamphetamine (3 mg/kg), cocaine (10 mg/kg), or saline. We observed a significant decrease in GLAST immunofluorescence in brains of psychostimulant treated mice compared with saline controls. In addition, we observed increased labelling of CRF2 in drug treated groups, a decrease in the number of S100ß positive cells, and an increase of co-staining of CRF2 with both S100ß and tyrosine hydroxylase (dopamine neurons). Our results suggest a significant interaction between CRF2, GLAST, and astrocytes in the midbrain that emerges with repeated exposure to psychostimulants. These findings provide rationale for future investigation of astrocyte-based strategies for altering cellular and circuit function in response to stress and drug exposure.


Subject(s)
Amino Acid Transport System X-AG/metabolism , Cocaine , Corticotropin-Releasing Hormone/metabolism , Methamphetamine , Ventral Tegmental Area , Animals , Astrocytes/metabolism , Cocaine/pharmacology , Methamphetamine/pharmacology , Mice , Ventral Tegmental Area/drug effects , Ventral Tegmental Area/metabolism
10.
Commun Biol ; 3(1): 693, 2020 11 19.
Article in English | MEDLINE | ID: mdl-33214681

ABSTRACT

Epigenetic regulation of gene expression occurs in a cell type-specific manner. Current cell-type specific neuroepigenetic studies rely on cell sorting methods that can alter cell phenotype and introduce potential confounds. Here we demonstrate and validate a Nuclear Tagging and Translating Ribosome Affinity Purification (NuTRAP) approach for temporally controlled labeling and isolation of ribosomes and nuclei, and thus RNA and DNA, from specific central nervous system cell types. Analysis of gene expression and DNA modifications in astrocytes or microglia from the same animal demonstrates differential usage of DNA methylation and hydroxymethylation in CpG and non-CpG contexts that corresponds to cell type-specific gene expression. Application of this approach in LPS treated mice uncovers microglia-specific transcriptome and epigenome changes in inflammatory pathways that cannot be detected with tissue-level analysis. The NuTRAP model and the validation approaches presented can be applied to any brain cell type for which a cell type-specific cre is available.


Subject(s)
Astrocytes/metabolism , Epigenesis, Genetic , Microglia/metabolism , Transcriptome , Aldehyde Dehydrogenase 1 Family/genetics , Aldehyde Dehydrogenase 1 Family/metabolism , Animals , Astrocytes/drug effects , Cells, Cultured , Female , Gene Expression Regulation , Genetic Markers , Lipopolysaccharides/toxicity , Male , Mice , Microglia/drug effects , RNA-Seq , Retinal Dehydrogenase/genetics , Retinal Dehydrogenase/metabolism
11.
Addict Biol ; 25(4): e12763, 2020 07.
Article in English | MEDLINE | ID: mdl-31062485

ABSTRACT

Ethanol and psychostimulant use disorders exhibit comorbidity in humans and cross-sensitization in animal models, but the neurobiological underpinnings of this are not well understood. Ethanol acutely increases dopamine neuron excitability, and psychostimulants such as cocaine or methamphetamine increase extracellular dopamine through inhibition of uptake through the dopamine transporter (DAT) and/or vesicular monoamine transporter 2 (VMAT2). Psychostimulants also depress dopamine neuron activity by enhancing dendritic dopamine neurotransmission. Here, we show that mice with a previous history of ethanol drinking are more sensitive to the locomotor-stimulating effects of a high dose (5 mg/kg), but not lower doses (1 and 3 mg/kg) of methamphetamine or any tested dose of cocaine (3, 10, and 18 mg/kg), compared with water-drinking controls. We next investigated the impact of a history of ethanol drinking, in a separate group of mice, on methamphetamine- or cocaine-induced enhancement of dendritic dopamine transmission using whole-cell voltage clamp electrophysiology in mouse brain slices. Methamphetamine, applied at a concentration (10 µM) that affects both DAT and VMAT2, enhanced D2 receptor-mediated inhibitory postsynaptic currents (D2-IPSCs) in both groups, but this effect was blunted in mice with a history of ethanol drinking. As methamphetamine action at VMAT2 disrupts dopamine neurotransmission, these results may suggest enhanced action of methamphetamine at VMAT2. Furthermore, there were no differences in low-dose methamphetamine or cocaine-induced enhancement of D2-IPSCs, suggesting intact DAT function. Disruption of methamphetamine-induced enhancement of dendritic dopamine transmission would result in decreased inhibition of dopamine neurons, ultimately increasing downstream release and the behavioral effects of methamphetamine.


Subject(s)
Central Nervous System Depressants/pharmacology , Central Nervous System Stimulants/pharmacology , Dopaminergic Neurons/drug effects , Ethanol/pharmacology , Locomotion/drug effects , Methamphetamine/pharmacology , Alcoholism , Amphetamine-Related Disorders , Animals , Cocaine/pharmacology , Cocaine-Related Disorders , Dendrites/drug effects , Dendrites/metabolism , Dopamine/metabolism , Dopamine Plasma Membrane Transport Proteins/drug effects , Dopamine Plasma Membrane Transport Proteins/metabolism , Dopamine Uptake Inhibitors/pharmacology , Dopaminergic Neurons/metabolism , Inhibitory Postsynaptic Potentials/drug effects , Male , Mice , Pars Compacta/drug effects , Pars Compacta/metabolism , Patch-Clamp Techniques , Receptors, Dopamine D2/drug effects , Receptors, Dopamine D2/metabolism , Synaptic Transmission/drug effects , Vesicular Monoamine Transport Proteins/drug effects , Vesicular Monoamine Transport Proteins/metabolism
12.
Mov Disord ; 33(12): 1928-1937, 2018 12.
Article in English | MEDLINE | ID: mdl-30440089

ABSTRACT

BACKGROUND: Parkinson's disease is characterized by the progressive loss of dopamine neurons in the substantia nigra, leading to severe motor deficits. Although the disease likely begins to develop years before observable motor symptoms, the specific morphological and functional alterations involved are poorly understood. OBJECTIVES: MitoPark mice lack the gene coding for mitochondrial transcription factor A specifically in dopamine neurons, which over time produces a progressive decline of neuronal function and related behavior that phenotypically mirrors human parkinsonism. Our previous work identified a progressive decrease in cell capacitance in dopamine neurons from MitoPark mice, possibly suggesting reduced membrane surface area. We therefore sought to identify and quantify somatodendritic parameters in this model across age. METHODS: We used whole-cell patch clamp and fluorescent labeling to quantify somatodendritic morphology of single, neurobiotin-filled dopamine neurons in acutely isolated brain slices from MitoPark mice. RESULTS: We found that MitoPark mice exhibit an adult-onset, age-dependent reduction of neuritic branching and soma size in dopamine neurons. This decline proceeds similarly in MitoPark mice of both sexes, but does not begin until after the age that early decrements in ion channel physiology and behavior have previously been observed. CONCLUSIONS: A progressive and severe decline in somatodendritic morphology occurs prior to cell death, but is not responsible for the subtle decrements observable in the earliest stages of neurodegeneration. This work could help identify the ideal time window for specific treatments to halt disease progression and avert debilitating motor deficits in Parkinson's patients. © 2018 International Parkinson and Movement Disorder Society.


Subject(s)
Dopamine/metabolism , Dopaminergic Neurons/metabolism , Motor Activity/physiology , Parkinson Disease/physiopathology , Animals , Disease Models, Animal , Dopaminergic Neurons/pathology , Mice, Transgenic , Parkinson Disease/pathology , Parkinsonian Disorders/metabolism , Parkinsonian Disorders/pathology , Substantia Nigra/metabolism , Substantia Nigra/pathology
13.
Int J Neuropsychopharmacol ; 21(4): 361-370, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29272412

ABSTRACT

Background: Neurotensin is a peptide that modulates central dopamine neurotransmission and dopamine-related behaviors. Methamphetamine self-administration increases neurotensin levels in the ventral tegmental area, but the consequences for self-administration behavior have not been described. Here we test the hypothesis that antagonizing neurotensin receptors in the ventral tegmental area attenuates the acquisition of methamphetamine self-administration and methamphetamine intake. Methods: We implanted mice with an indwelling catheter in the right jugular vein and bilateral cannulae directed at the ventral tegmental area. Mice were then trained to nose-poke for i.v. infusions of methamphetamine (0.1 mg/kg/infusion) on a fixed ratio 3 schedule. Results: Mice receiving microinfusions of the neurotensin NTS1/NTS2 receptor antagonist SR142948A in the ventral tegmental area (10 ng/side) prior to the first 5 days of methamphetamine self-administration required more sessions to reach acquisition criteria. Methamphetamine intake was decreased in SR142948A-treated mice both during training and later during maintenance of self-administration. Drug seeking during extinction, cue-induced reinstatement, and progressive ratio schedules was also reduced in the SR142948A group. The effects of SR142948A were not related to changes in basal locomotor activity or methamphetamine psychomotor properties. In both SR142948A- and saline-treated mice, a strong positive correlation between methamphetamine intake and enhanced locomotor activity was observed. Conclusion: Our results suggest that neurotensin input in the ventral tegmental area during initial methamphetamine exposure contributes to the acquisition of methamphetamine self-administration and modulates later intake and methamphetamine-seeking behavior in mice. Furthermore, our results highlight the role of endogenous neurotensin in the ventral tegmental area in the reinforcing efficacy of methamphetamine, independent of its psychomotor effects.


Subject(s)
Behavior, Animal/drug effects , Central Nervous System Stimulants/pharmacology , Methamphetamine/pharmacology , Neurotensin/metabolism , Receptors, Neurotensin/antagonists & inhibitors , Ventral Tegmental Area/drug effects , Ventral Tegmental Area/metabolism , Animals , Central Nervous System Stimulants/administration & dosage , Male , Methamphetamine/administration & dosage , Mice , Mice, Inbred DBA , Self Medication
14.
PLoS One ; 12(7): e0180710, 2017.
Article in English | MEDLINE | ID: mdl-28686721

ABSTRACT

Methamphetamine (METH) is a psychostimulant that exhibits significant abuse potential. Although METH addiction is a major health and societal concern, no drug is currently approved for its therapeutic management. METH activates the central dopaminergic "reward" circuitry, and with repeated use increases levels of the neuromodulatory peptide neurotensin in the nucleus accumbens and ventral tegmental area. Previous studies in rats suggest that neurotensin agonism decreases METH self-administration, but these studies did not examine the effect of neurotensin agonism on the pattern of self-administration or open field locomotion. In our studies, we established intravenous METH self-administration in male, DBA/2J mice (fixed ratio 3, 2 hr sessions) and examined the effect of pretreatment with the NTS1 receptor agonist PD149163 on METH self-administration behavior. Locomotion following PD149163 was also measured up to 2 hours after injection on a rotarod and in an open field. Pretreatment with PD149163 (0.05 and 0.10 mg/kg, s.c.) significantly decreased METH self-administration. The pattern of responding suggested that PD149163 decreased motivation to self-administer METH initially in the session with more normal intake in the second hour of access. Voluntary movement in the open-field was significantly decreased by both 0.05 and 0.10 mg/kg (s.c.) PD149163 from 10-120 minutes after injection, but rotarod performance suggested that PD149163 did not cause frank sedation. These results suggest that a systemically delivered NTS1 receptor agonist decreases METH self-administration in mice. The pattern of self-administration suggests that PD149163 may acutely decrease motivation to self-administer METH before the drug is experienced, but cannot rule out that depression of voluntary movement plays a role in the decreased self-administration.


Subject(s)
Methamphetamine/toxicity , Neurotensin/analogs & derivatives , Neurotensin/metabolism , Self Administration/methods , Substance-Related Disorders/drug therapy , Animals , Disease Models, Animal , Dopamine/metabolism , Humans , Mice , Mice, Inbred DBA , Neurotensin/administration & dosage , Receptors, Neurotensin/metabolism , Substance-Related Disorders/physiopathology
15.
Neuropsychopharmacology ; 42(3): 707-715, 2017 02.
Article in English | MEDLINE | ID: mdl-27468917

ABSTRACT

The increase in dopamine (DA) neurotransmission stimulated by in vivo cocaine exposure is tempered by G protein-dependent inhibitory feedback mechanisms in DA neurons of the ventral tegmental area (VTA). G protein-gated inwardly rectifying K+ (GIRK/Kir3) channels mediate the direct inhibitory effect of GABAB receptor (GABABR) and D2 DA receptor (D2R) activation in VTA DA neurons. Here we examined the effect of the DA neuron-specific loss of GIRK channels on D2R-dependent regulation of VTA DA neuron excitability and on cocaine-induced, reward-related behaviors. Selective ablation of Girk2 in DA neurons did not alter the baseline excitability of VTA DA neurons but significantly reduced the magnitude of D2R-dependent inhibitory somatodendritic currents and blunted the impact of D2R activation on spontaneous activity and neuronal excitability. Mice lacking GIRK channels in DA neurons exhibited increased locomotor activation in response to acute cocaine administration and an altered locomotor sensitization profile, as well as increased responding for and intake of cocaine in an intravenous self-administration test. These mice, however, showed unaltered cocaine-induced conditioned place preference. Collectively, our data suggest that feedback inhibition to VTA DA neurons, mediated by GIRK channel activation, tempers the locomotor stimulatory effect of cocaine while also modulating the reinforcing effect of cocaine in an operant-based self-administration task.


Subject(s)
Behavior, Animal/drug effects , Cocaine/pharmacology , Dopaminergic Neurons/metabolism , G Protein-Coupled Inwardly-Rectifying Potassium Channels/metabolism , Learning/drug effects , Receptors, Dopamine D2/metabolism , Reward , Ventral Tegmental Area/metabolism , Animals , Dopaminergic Neurons/drug effects , G Protein-Coupled Inwardly-Rectifying Potassium Channels/drug effects , Mice , Mice, Transgenic , Receptors, Dopamine D2/drug effects , Ventral Tegmental Area/drug effects
16.
Int J Neuropsychopharmacol ; 18(5)2014 Oct 31.
Article in English | MEDLINE | ID: mdl-25522412

ABSTRACT

BACKGROUND: Methamphetamine is a psychomotor stimulant with abuse liability and a substrate for catecholamine uptake transporters. Acute methamphetamine elevates extracellular dopamine, which in the midbrain can activate D2 autoreceptors to increase a G-protein gated inwardly rectifying potassium (GIRK) conductance that inhibits dopamine neuron firing. These studies examined the neurophysiological consequences of methamphetamine self-administration on GIRK channel-mediated currents in dopaminergic neurons in the substantia nigra and ventral tegmental area. METHODS: Male DBA/2J mice were trained to self-administer intravenous methamphetamine. A dose response was conducted as well as extinction and cue-induced reinstatement. In a second study, after at least 2 weeks of stable self-administration of methamphetamine, electrophysiological brain slice recordings were conducted on dopamine neurons from self-administering and control mice. RESULTS: In the first experiment, ad libitum-fed, nonfood-trained mice exhibited a significant increase in intake and locomotion following self-administration as the concentration of methamphetamine per infusion was increased (0.0015-0.15mg/kg/infusion). Mice exhibited extinction in responding and cue-induced reinstatement. In the second experiment, dopamine cells in both the substantia nigra and ventral tegmental area from adult mice with a history of methamphetamine self-administration exhibited significantly smaller D2 and GABAB receptor-mediated currents compared with control mice, regardless of whether their daily self-administration sessions had been 1 or 4 hours. Interestingly, the effects of methamphetamine self-administration were not present when intracellular calcium was chelated by including BAPTA in the recording pipette. CONCLUSIONS: Our results suggest that methamphetamine self-administration decreases GIRK channel-mediated currents in dopaminergic neurons and that this effect may be calcium dependent.


Subject(s)
Behavior, Animal/drug effects , Dopaminergic Neurons/drug effects , Electrophysiology , G Protein-Coupled Inwardly-Rectifying Potassium Channels/physiology , Mesencephalon/drug effects , Methamphetamine/pharmacology , Animals , Behavior, Addictive , Central Nervous System Stimulants , Cues , Dopaminergic Neurons/physiology , Dose-Response Relationship, Drug , Extinction, Psychological/drug effects , Male , Mesencephalon/cytology , Mice , Mice, Inbred DBA , Motor Activity/drug effects , Reinforcement Schedule , Self Administration/psychology , Substantia Nigra/cytology , Substantia Nigra/drug effects , Ventral Tegmental Area/cytology , Ventral Tegmental Area/drug effects
17.
Am J Physiol Endocrinol Metab ; 307(10): E944-53, 2014 Nov 15.
Article in English | MEDLINE | ID: mdl-25269482

ABSTRACT

Energy expenditure is determined by metabolic rate and diet-induced thermogenesis. Normally, energy expenditure increases due to neural mechanisms that sense plasma levels of ingested nutrients/hormones and reflexively increase sympathetic nerve activity (SNA). Here, we investigated neural mechanisms of glucose-driven sympathetic activation by determining contributions of neuronal activity in the hypothalamic paraventricular nucleus (PVN) and activation of corticotropin-releasing factor (CRF) receptors in the rostral ventrolateral medulla (RVLM). Glucose was infused intravenously (150 mg/kg, 10 min) in male rats to raise plasma glucose concentration to a physiological postprandial level. In conscious rats, glucose infusion activated CRF-containing PVN neurons and TH-containing RVLM neurons, as indexed by c-Fos immunofluorescence. In α-chloralose/urethane-anesthetized rats, glucose infusion increased lumbar and splanchnic SNA, which was nearly prevented by prior RVLM injection of the CRF receptor antagonist astressin (10 pmol/50 nl). This cannot be attributed to a nonspecific effect, as sciatic afferent stimulation increased SNA and ABP equivalently in astressin- and aCSF-injected rats. Glucose-stimulated sympathoexcitation was largely reversed during inhibition of PVN neuronal activity with the GABA-A receptor agonist muscimol (100 pmol/50 nl). The effects of astressin to prevent glucose-stimulated sympathetic activation appear to be specific to interruption of PVN drive to RVLM because RVLM injection of astressin prior to glucose infusion effectively prevented SNA from rising and prevented any fall of SNA in response to acute PVN inhibition with muscimol. These findings suggest that activation of SNA, and thus energy expenditure, by glucose is initiated by activation of CRF receptors in RVLM by descending inputs from PVN.


Subject(s)
Energy Metabolism , Glucose/metabolism , Medulla Oblongata/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , Receptors, Corticotropin-Releasing Hormone/metabolism , Sympathetic Nervous System/metabolism , Animals , Corticotropin-Releasing Hormone/antagonists & inhibitors , Corticotropin-Releasing Hormone/pharmacology , GABA-A Receptor Agonists/pharmacology , Male , Medulla Oblongata/drug effects , Muscimol/pharmacology , Paraventricular Hypothalamic Nucleus/drug effects , Peptide Fragments/pharmacology , Rats , Rats, Sprague-Dawley , Receptors, Corticotropin-Releasing Hormone/drug effects , Sympathetic Nervous System/drug effects
18.
Am J Physiol Heart Circ Physiol ; 305(12): H1772-80, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24097432

ABSTRACT

Like humans with sleep apnea, rats exposed to chronic intermittent hypoxia (CIH) experience arterial hypoxemias and develop hypertension characterized by exaggerated sympathetic nerve activity (SNA). To gain insights into the poorly understood mechanisms that initiate sleep apnea/CIH-associated hypertension, experiments were performed in rats exposed to CIH for only 7 days. Compared with sham-treated normoxic control rats, CIH-exposed rats (n = 8 rats/group) had significantly increased hematocrit (P < 0.001) and mean arterial pressure (MAP; P < 0.05). Blockade of ganglionic transmission caused a significantly (P < 0.05) greater reduction of MAP in rats exposed to CIH than control rats (n = 8 rats/group), indicating a greater contribution of SNA in the support of MAP even at this early stage of CIH hypertension. Chemical inhibition of neuronal discharge in the hypothalamic paraventricular nucleus (PVN) (100 pmol muscimol) had no effect on renal SNA but reduced lumbar SNA (P < 0.005) and MAP (P < 0.05) more in CIH-exposed rats (n = 8) than control rats (n = 7), indicating that CIH increased the contribution of PVN neuronal activity in the support of lumbar SNA and MAP. Because CIH activates brain regions controlling body fluid homeostasis, the effects of internal carotid artery injection of hypertonic saline were tested and determined to increase lumbar SNA more (P < 0.05) in CIH-exposed rats than in control rats (n = 9 rats/group). We conclude that neurogenic mechanisms are activated early in the development of CIH hypertension such that elevated MAP relies on increased sympathetic tonus and ongoing PVN neuronal activity. The increased sensitivity of Na(+)/osmosensitive circuitry in CIH-exposed rats suggests that early neuroadaptive responses among body fluid regulatory neurons could contribute to the initiation of CIH hypertension.


Subject(s)
Blood Pressure/physiology , Hypoxia/physiopathology , Neurons/physiology , Paraventricular Hypothalamic Nucleus/physiopathology , Sympathetic Nervous System/physiopathology , Animals , Blood Pressure/drug effects , GABA-A Receptor Agonists/pharmacology , Heart Rate/drug effects , Heart Rate/physiology , Male , Muscimol/pharmacology , Neurons/drug effects , Paraventricular Hypothalamic Nucleus/drug effects , Rats , Rats, Sprague-Dawley , Sympathetic Nervous System/drug effects
19.
J Neurosci ; 33(34): 13861-72, 2013 Aug 21.
Article in English | MEDLINE | ID: mdl-23966705

ABSTRACT

Restriction of food intake increases the acquisition of drug abuse behavior and enhances the reinforcing efficacy of those drugs. However, the neurophysiological mechanisms responsible for the interactions between feeding state and drug use are largely unknown. Here we show that chronic mild food restriction increases the burst firing of dopamine neurons in the substantia nigra. Dopamine neurons from food-restricted mice exhibited increased burst firing in vivo, an effect that was enhanced by an injection of the psychomotor stimulant cocaine (10 mg/kg, i.p.). Food restriction also enhanced aspartic acid-induced burst firing of dopamine neurons in an ex vivo brain slice preparation, consistent with an adaptation occurring in the somatodendritic compartment and independent of a circuit mechanism. Enhanced burst firing persisted after 10 d of free feeding following chronic food restriction but was not observed following a single overnight fast. Whole-cell patch-clamp recordings indicated that food restriction also increased electrically evoked AMPAR/NMDAR ratios and increased D2 autoreceptor-mediated desensitization in dopamine neurons. These results identify dopamine neurons in the substantia nigra as a convergence point for the interactions between feeding state and drugs of abuse. Furthermore, increased glutamate transmission combined with decreased autoreceptor inhibition could work in concert to enhance drug efficacy in response to food restriction.


Subject(s)
Action Potentials/physiology , Brain/cytology , Dopaminergic Neurons/physiology , Food Deprivation/physiology , Receptors, Glutamate/metabolism , Action Potentials/drug effects , Analysis of Variance , Animals , Aspartic Acid/pharmacology , Biophysics , Dopamine/pharmacology , Dopamine Agents/pharmacology , Dopaminergic Neurons/drug effects , Electric Stimulation , Excitatory Amino Acid Agents/pharmacology , In Vitro Techniques , Iontophoresis/methods , Male , Mice , Mice, Inbred DBA
20.
Am J Physiol Heart Circ Physiol ; 305(3): H403-9, 2013 Aug 01.
Article in English | MEDLINE | ID: mdl-23709603

ABSTRACT

Exposure to chronic intermittent hypoxia (CIH) is an animal model that mimics the repetitive bouts of hypoxemia experienced by humans with sleep apnea. Rats exposed to CIH develop hypertension that depends on the activation of sympathetic nerve activity (SNA). Since obesity and metabolic syndrome have been linked to neurogenic hypertension and sleep apnea, and because sleep apnea can adversely affect aerobic exercise capacity, we tested the hypothesis that rats bred for selection of low aerobic capacity running (LCR) would have a greater hypertensive response to CIH than rats bred for high aerobic capacity running (HCR). Blockade of ganglionic transmission was performed to compare the contribution of SNA to the maintenance of resting mean arterial pressure (MAP). Next, hypertensive responses to 7 days of CIH were compared across LCR and HCR rats (14-16 mo old). Finally, the contribution of the hypothalamic paraventricular nucleus (PVN) to the maintenance of SNA and hypertension after CIH was determined and compared across groups. Although LCR rats were less active and had greater body weights than HCR rats, resting MAP, the contribution of ongoing SNA to the maintenance of MAP, and hypertensive responses to CIH were similar between groups. Contrary to our hypothesis, chemical inhibition of the PVN with muscimol (1 mmol/100 nl) caused a larger fall of MAP in HCR rats than in LCR rats. We conclude that LCR rats do not have resting hypertension or an exaggerated hypertensive response to CIH. Interestingly, the maintenance of CIH hypertension in LCR rats compared with HCR rats appears less reliant on ongoing PVN neuronal activity.


Subject(s)
Arterial Pressure , Exercise Tolerance , Hypertension/etiology , Hypoxia/complications , Animals , Arterial Pressure/drug effects , Arterial Pressure/genetics , Body Weight , Chronic Disease , Disease Models, Animal , Exercise Tolerance/genetics , GABA-A Receptor Agonists/pharmacology , Ganglionic Blockers/pharmacology , Genotype , Heart Rate , Hypertension/genetics , Hypertension/physiopathology , Hypoxia/genetics , Hypoxia/physiopathology , Male , Motor Activity , Paraventricular Hypothalamic Nucleus/drug effects , Paraventricular Hypothalamic Nucleus/physiopathology , Phenotype , Rats , Rats, Inbred Strains , Species Specificity , Sympathetic Nervous System/drug effects , Sympathetic Nervous System/physiopathology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...