Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Allergy ; 5: 1366596, 2024.
Article in English | MEDLINE | ID: mdl-38533355

ABSTRACT

Since the advent of the Universal Detector Calibrant (UDC) by scientists at Florida International University in 2013, this tool has gone largely unrecognized and under-utilized by canine scent detection practitioners. The UDC is a chemical that enables reliability testing of biological and instrumental detectors. Training a biological detector, such as a scent detection canine, to respond to a safe, non-target, and uncommon compound has significant advantages. For example, if used prior to a search, the UDC provides the handler with the ability to confirm the detection dog is ready to work without placing target odor on site (i.e., a positive control), thereby increasing handler confidence in their canine and providing documentation of credibility that can withstand legal scrutiny. This review describes the UDC, summarizes its role in canine detection science, and addresses applications for UDC within scent detection canine development, training, and testing.

2.
J Forensic Sci ; 68(6): 2021-2036, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37691017

ABSTRACT

While canines are most commonly trained to detect traditional explosives, such as nitroaromatics and smokeless powders, homemade explosives (HMEs), such as fuel-oxidizer mixtures, are arguably a greater threat. As such, it is imperative that canines are sufficiently trained in the detection of such HMEs. The training aid delivery device (TADD) is a primary containment device that has been used to house HMEs and HME components for canine detection training purposes. This research assesses the odor release from HME components, ammonium nitrate (AN), urea nitrate (UN), and potassium chlorate (PC), housed in TADDs. Canine odor recognition tests (ORTs) were used with analytical data to determine the detectability of TADDs containing AN, UN, or PC. Headspace analysis by gas chromatography/mass spectrometry (GC/MS) with solid-phase microextraction (SPME) or online cryotrapping were used to measure ammonia or chlorine, as well as other unwanted odorants, emanating from bulk AN, UN, and PC in TADDs over 28 weeks. The analytical data showed variation in the amount of ammonia and chlorine over time, with ammonia from AN and UN decreasing slowly over time and the abundance of chlorine from PC TADDs dependent on the frequency of exposure to ambient air. Even with these variations in odor abundance, canines previously trained to detect bulk explosive HME components were able to detect all three targets in glass and plastic TADDs for at least 18 months after loading. Detection proficiency ranged from 64% to 100% and was not found to be dependent on either age of material.


Subject(s)
Explosive Agents , Dogs , Animals , Chlorine , Ammonia , Odorants/analysis , Gas Chromatography-Mass Spectrometry
3.
Front Med (Lausanne) ; 9: 848090, 2022.
Article in English | MEDLINE | ID: mdl-35445042

ABSTRACT

Biomedical detection dogs offer incredible advantages during disease outbreaks that are presently unmatched by current technologies, however, dogs still face hurdles of implementation due to lack of inter-governmental cooperation and acceptance by the public health community. Here, we refine the definition of a biomedical detection dog, discuss the potential applications, capabilities, and limitations of biomedical detection dogs in disease outbreak scenarios, and the safety measures that must be considered before and during deployment. Finally, we provide recommendations on how to address and overcome the barriers to acceptance of biomedical detection dogs through a dedicated research and development investment in olfactory sciences.

4.
ACS Synth Biol ; 10(11): 3205-3208, 2021 11 19.
Article in English | MEDLINE | ID: mdl-34723497

ABSTRACT

Colorimetric reporter enzymes are useful for generating eye-readable biosensor readouts that do not require a device to interpret, an attractive property for applications in remote or developing parts of the world. The use of cell-free gene expression further facilitates such applications via amenability to lyophilization and incorporation into materials like paper. Currently, detection of multiple analytes simultaneously with these systems requires multiple reactions or a device. Here we evaluate seven enzymes and 15 corresponding substrates for functionality in a particular cell-free expression system known as PURE. We report eight enzyme/substrate pairs spanning four enzymes that are compatible with PURE. Of the four enzymes, three pairings exhibit no cross-reactivity. We finally show that at least one pairing can be used to create a third color when both are present, highlighting the potential use of these reporters for multiplex sensing.


Subject(s)
Biosensing Techniques/methods , Colorimetry/methods , Cell-Free System/metabolism , Color , Enzymes/metabolism , Gene Expression/physiology
5.
J Vis Exp ; (174)2021 08 30.
Article in English | MEDLINE | ID: mdl-34515672

ABSTRACT

Characterizing and cataloging genetic parts are critical to the design of useful genetic circuits. Having well-characterized parts allows for the fine-tuning of genetic circuits, such that their function results in predictable outcomes. With the growth of synthetic biology as a field, there has been an explosion of genetic circuits that have been implemented in microbes to execute functions pertaining to sensing, metabolic alteration, and cellular computing. Here, we show a rapid and cost-effective method for characterizing genetic parts. Our method utilizes cell-free lysate, prepared in-house as a medium to evaluate parts via the expression of a reporter protein. Template DNA is prepared by PCR amplification using inexpensive primers to add variant parts to the reporter gene, and the template is added to the reaction as linear DNA without cloning. Parts that can be added in this way include promoters, operators, ribosome binding sites, insulators, and terminators. This approach, combined with the incorporation of an acoustic liquid handler and 384-well plates, allows the user to carry out high-throughput evaluations of genetic parts in a single day. By comparison, cell-based screening approaches require time-consuming cloning and have longer testing times due to overnight culture and culture density normalization steps. Further, working in cell-free lysate allows the user to exact tighter control over the expression conditions through the addition of exogenous components and DNA at precise concentrations. Results obtained from cell-free screening can be used directly in applications of cell-free systems or, in some cases, as a way to predict function in whole cells.


Subject(s)
Gene Regulatory Networks , Synthetic Biology , Cell-Free System , DNA Primers , Promoter Regions, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...