Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 160(23)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38904943

ABSTRACT

We investigated the spectrum of density fluctuations of a liquid crystal, CB7CB, in two different orientations by using high-resolution inelastic x-ray scattering. Our analysis, based on Bayesian principles, revealed that high-frequency collective excitations propagate through this mesoscale-ordered sample in a peculiar manner that lies somewhere between those observed in liquids and crystalline systems. Interestingly, when we probed longer length scales, a more pronounced solid-like response emerged. This was mainly characterized by anomalously sharp inelastic excitations and the onset of shear mode propagation. Comparison with previous x-ray diffraction results suggests a correlation between the observed behavior and the mesogen arrangement.

2.
J Synchrotron Radiat ; 25(Pt 6): 1753-1759, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-30407186

ABSTRACT

Successful implementation of the single-photon-counting Eiger 500k pixel array detector for sub-millisecond X-ray photon correlation spectroscopy (XPCS) measurements in the ultra-small-angle scattering region is reported. The performance is demonstrated by measuring the dynamics of dilute silica colloids in aqueous solvents when the detector is operated at different counter depths, 4, 8 and 12 bit. In the fastest mode involving 4 bit parallel readout, a stable frame rate of 22 kHz is obtained that enabled measurement of intensity-intensity autocorrelation functions with good statistics down to the 50 µs range for a sample with sufficient scattering power. The high frame rate and spatial resolution together with large number of pixels of the detector facilitate the investigation of sub-millisecond dynamics over a broad length scale by multispeckle XPCS. This is illustrated by an example involving phoretic motion of colloids during the phase separation of the solvent.

SELECTION OF CITATIONS
SEARCH DETAIL
...