Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
Add more filters










Publication year range
1.
Glia ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864289

ABSTRACT

Astrocytes play an essential role in regulating synaptic transmission. This study describes a novel form of modulation of excitatory synaptic transmission in the mouse hippocampus by astrocytic G-protein-coupled receptors (GPCRs). We have previously described astrocytic glutamate release via protease-activated receptor-1 (PAR1) activation, although the regulatory mechanisms for this are complex. Through electrophysiological analysis and modeling, we discovered that PAR1 activation consistently increases the concentration and duration of glutamate in the synaptic cleft. This effect was not due to changes in the presynaptic glutamate release or alteration in glutamate transporter expression. However, blocking group II metabotropic glutamate receptors (mGluR2/3) abolished PAR1-mediated regulation of synaptic glutamate concentration, suggesting a role for this GPCR in mediating the effects of PAR1 activation on glutamate release. Furthermore, activation of mGluR2/3 causes glutamate release through the TREK-1 channel in hippocampal astrocytes. These data show that astrocytic GPCRs engage in a novel regulatory mechanism to shape the time course of synaptically-released glutamate in excitatory synapses of the hippocampus.

2.
Obstet Med ; 17(1): 28-35, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38655195

ABSTRACT

Background: With the emergence of the coronavirus 2019 (COVID-19) pandemic, it was essential to determine the impact of this disease on pregnant women and neonatal outcomes. In this study, we present a series of nine cases of pregnant women with COVID-19 disease requiring intensive care unit (ICU) admission. Methods: We retrospectively collected clinical data of pregnant women with COVID-19 disease admitted to ICU between September 2020 and September 2021. Results: Most common presenting symptom was cough. Two patients had no respiratory symptoms at presentation. Five of the nine patients required invasive mechanical ventilation. Seven patients required caesarean section, four of whom delivered preterm. There were no maternal or neonatal deaths. Conclusions: Although maternal and neonatal outcomes reported in our study are encouraging, it is imperative to emphasize the importance of an individualized, multidisciplinary approach, and good healthcare infrastructure for optimal management of this group of patients.

3.
J Extracell Vesicles ; 13(4): e12439, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38647111

ABSTRACT

Our previous findings demonstrated that astrocytic HIF-1α plays a major role in HIV-1 Tat-mediated amyloidosis which can lead to Alzheimer's-like pathology-a comorbidity of HIV-Associated Neurocognitive Disorders (HAND). These amyloids can be shuttled in extracellular vesicles, and we sought to assess whether HIV-1 Tat stimulated astrocyte-derived EVs (ADEVs) containing the toxic amyloids could result in neuronal injury in vitro and in vivo. We thus hypothesized that blocking HIF-1α could likely mitigate HIV-1 Tat-ADEV-mediated neuronal injury. Rat hippocampal neurons when exposed to HIV-1 Tat-ADEVs carrying the toxic amyloids exhibited amyloid accumulation and synaptodendritic injury, leading to functional loss as evidenced by alterations in miniature excitatory post synaptic currents. The silencing of astrocytic HIF-1α not only reduced the biogenesis of ADEVs, as well as amyloid cargos, but also ameliorated neuronal synaptodegeneration. Next, we determined the effect of HIV-1 Tat-ADEVs carrying amyloids in the hippocampus of naive mice brains. Naive mice receiving the HIV-1 Tat-ADEVs, exhibited behavioural changes, and Alzheimer's 's-like pathology accompanied by synaptodegeneration. This impairment(s) was not observed in mice injected with HIF-1α silenced ADEVs. This is the first report demonstrating the role of amyloid-carrying ADEVs in mediating synaptodegeneration leading to behavioural changes associated with HAND and highlights the protective role of HIF-1α.


Subject(s)
Astrocytes , Extracellular Vesicles , HIV-1 , Hippocampus , Hypoxia-Inducible Factor 1, alpha Subunit , Neurons , Extracellular Vesicles/metabolism , Animals , Astrocytes/metabolism , Mice , Rats , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , HIV-1/metabolism , Hippocampus/metabolism , Neurons/metabolism , tat Gene Products, Human Immunodeficiency Virus/metabolism , Humans , Neurocognitive Disorders/metabolism , Neurocognitive Disorders/etiology , HIV Infections/metabolism , HIV Infections/complications , Male , AIDS Dementia Complex/metabolism
4.
Br J Pharmacol ; 181(9): 1421-1437, 2024 May.
Article in English | MEDLINE | ID: mdl-38044332

ABSTRACT

BACKGROUND AND PURPOSE: Chronic pain remains a major clinical problem that needs effective therapeutic agents. Glutamate delta 1 (GluD1) receptors and the protein cerebellin 1 (Cbln1) are down-regulated in the central amygdala (CeA) in models of inflammatory and neuropathic pain. One treatment with Cbln1, intracerebroventricularly (ICV) or in CeA, normalized GluD1 and reduced AMPA receptor expression, resulting in lasting (7-10 days) pain relief. Unlike many CNS-targeting biological agents, the structure of Cbln1 suggests potential blood-brain barrier penetration. Here, we have tested whether systemic administration of Cbln1 provides analgesic effects via action in the CNS. EXPERIMENTAL APPROACH: Analgesic effects of intravenous recombinant Cbln1 was assessed in complete Freund's adjuvant inflammatory pain model in mice. GluD1 knockout and a mutant form of Cbln1 were used. KEY RESULTS: A single intravenous injection of Cbln1 mitigated nocifensive and averse behaviour in both inflammatory and neuropathic pain models. This effect of Cbln1 was dependent on GluD1 receptors and required binding to the amino terminal domain of GluD1. Time course of analgesic effect was similar to previously reported ICV and intra-CeA injection. GluD1 in both spinal cord and CeA was down -regulated in the inflammatory pain model, whereas GluD1 expression in spinal cord but not in CeA, was partly normalized by intravenous Cbln1. Importantly, recombinant Cbln1 was detected in the synaptoneurosomes in spinal cord but not in the CeA. CONCLUSIONS AND IMPLICATIONS: Our results describe a novel mechanism by which systemic Cbln1 induces analgesia potentially by central actions involving normalization of signalling by spinal cord GluD1 receptors.


Subject(s)
Chronic Pain , Nerve Tissue Proteins , Neuralgia , Mice , Animals , Chronic Pain/drug therapy , Glutamic Acid , Receptors, Glutamate , Neuralgia/drug therapy , Analgesics/therapeutic use
5.
PLoS One ; 18(11): e0294583, 2023.
Article in English | MEDLINE | ID: mdl-37983226

ABSTRACT

In this study, we investigated the role of glutamate delta 1 receptor (GluD1) in oligodendrocyte progenitor cell (OPC)-mediated myelination during basal (development) and pathophysiological (cuprizone-induced demyelination) conditions. Initially, we sought to determine the expression pattern of GluD1 in OPCs and found a significant colocalization of GluD1 puncta with neuron-glial antigen 2 (NG2, OPC marker) in the motor cortex and dorsal striatum. Importantly, we found that the ablation of GluD1 led to an increase in the number of myelin-associated glycoprotein (MAG+) cells in the corpus callosum and motor cortex at P40 without affecting the number of NG2+ OPCs, suggesting that GluD1 loss selectively facilitates OPC differentiation rather than proliferation. Further, deletion of GluD1 enhanced myelination in the corpus callosum and motor cortex, as indicated by increased myelin basic protein (MBP) staining at P40, suggesting that GluD1 may play an essential role in the developmental regulation of myelination during the critical window period. In contrast, in cuprizone-induced demyelination, we observed reduced MBP staining in the corpus callosum of GluD1 KO mice. Furthermore, cuprizone-fed GluD1 KO mice showed more robust motor deficits. Collectively, our results demonstrate that GluD1 plays a critical role in OPC regulation and myelination in normal and demyelinating conditions.


Subject(s)
Demyelinating Diseases , Oligodendrocyte Precursor Cells , Mice , Animals , Myelin Sheath/metabolism , Oligodendrocyte Precursor Cells/metabolism , Cuprizone , Glutamic Acid/metabolism , Mice, Knockout , Oligodendroglia/metabolism , Cell Differentiation/physiology , Corpus Callosum/metabolism , Receptors, Glutamate/metabolism , Demyelinating Diseases/chemically induced , Demyelinating Diseases/metabolism , Mice, Inbred C57BL
6.
STAR Protoc ; 4(3): 102440, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37561634

ABSTRACT

Polypharmacology aids in the identification of multiple protein targets involved in disease pathology and selecting appropriate therapeutic compounds interacting with protein targets. Here, we present a protocol to identify the targets involved in obesity-linked diabetes and suitable phytocompounds to bind with the identified target. We describe steps to install and use softwares for identifying several protein targets by linking multiple diseases. This protocol allows the use of therapeutic compounds of both phytochemical and synthetic origins. For complete details on the use and execution of this protocol, please refer to Martiz et al.,1 and Maradesha et al.2.


Subject(s)
Hydrolases , Polypharmacology , Software
7.
Neurobiol Dis ; 181: 106117, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37031803

ABSTRACT

Thalamic regulation of cortical function is important for several behavioral aspects including attention and sensorimotor control. This region has also been studied for its involvement in seizure activity. Among the NMDA receptor subunits GluN2C and GluN2D are particularly enriched in several thalamic nuclei including nucleus reticularis of the thalamus (nRT). We have previously found that GluN2C deletion does not have a strong influence on the basal excitability and burst firing characteristics of reticular thalamus neurons. Here we find that GluN2D ablation leads to reduced depolarization-induced spike frequency and reduced hyperpolarization-induced rebound burst firing in nRT neurons. Furthermore, reduced inhibitory neurotransmission was observed in the ventrobasal thalamus (VB). A model with preferential downregulation of GluN2D from parvalbumin (PV)-positive neurons was generated. Conditional deletion of GluN2D from PV neurons led to a decrease in excitability and burst firing. In addition, reduced excitability and burst firing was observed in the VB neurons together with reduced inhibitory neurotransmission. Finally, young mice with GluN2D downregulation in PV neurons showed significant resistance to pentylenetetrazol-induced seizure and differences in sensitivity to isoflurane anesthesia but were normal in other behaviors. Conditional deletion of GluN2D from PV neurons also affected expression of other GluN2 subunits and GABA receptor in the nRT. Together, these results identify a unique role of GluN2D-containing receptors in the regulation of thalamic circuitry and seizure susceptibility which is relevant to mutations in GRIN2D gene found to be associated with pediatric epilepsy.


Subject(s)
Receptors, N-Methyl-D-Aspartate , Thalamus , Animals , Mice , Neurons/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Seizures/metabolism , Synaptic Transmission , Thalamic Nuclei/metabolism , Thalamus/metabolism
8.
Biol Psychiatry ; 94(4): 297-309, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37004850

ABSTRACT

BACKGROUND: Parvalbumin interneuron (PVI) activity synchronizes the medial prefrontal cortex circuit for normal cognitive function, and its impairment may contribute to schizophrenia (SZ). NMDA receptors in PVIs participate in these activities and form the basis for the NMDA receptor hypofunction hypothesis of SZ. However, the role of the GluN2D subunit, which is enriched in PVIs, in regulating molecular networks relevant to SZ is unknown. METHODS: Using electrophysiology and a mouse model with conditional deletion of GluN2D from PVIs (PV-GluN2D knockout [KO]), we examined the cell excitability and neurotransmission in the medial prefrontal cortex. Histochemical, RNA sequencing analysis and immunoblotting were conducted to understand molecular mechanisms. Behavioral analysis was conducted to test cognitive function. RESULTS: PVIs in the medial prefrontal cortex were found to express putative GluN1/2B/2D receptors. In a PV-GluN2D KO model, PVIs were hypoexcitable, whereas pyramidal neurons were hyperexcitable. Excitatory neurotransmission was higher in both cell types in PV-GluN2D KO, whereas inhibitory neurotransmission showed contrasting changes, which could be explained by reduced somatostatin interneuron projections and increased PVI projections. Genes associated with GABA (gamma-aminobutyric acid) synthesis, vesicular release, and uptake as well as those involved in formation of inhibitory synapses, specifically GluD1-Cbln4 and Nlgn2, and regulation of dopamine terminals were downregulated in PV-GluN2D KO. SZ susceptibility genes including Disc1, Nrg1, and ErbB4 and their downstream targets were also downregulated. Behaviorally, PV-GluN2D KO mice showed hyperactivity and anxiety behavior and deficits in short-term memory and cognitive flexibility. CONCLUSIONS: These findings demonstrate that GluN2D in PVIs serves as a point of convergence of pathways involved in the regulation of GABAergic synapses relevant to SZ.


Subject(s)
Parvalbumins , Schizophrenia , Animals , Mice , Interneurons/physiology , Mice, Knockout , Nerve Tissue Proteins/metabolism , Parvalbumins/metabolism , Prefrontal Cortex/metabolism , Receptor, ErbB-4/metabolism , Schizophrenia/genetics , Schizophrenia/metabolism
9.
Chempluschem ; 88(3): e202200420, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36795938

ABSTRACT

Bimetallic metal organic frameworks (BMOFs) are a class of crystalline solids and their structure comprises two metal ions in the lattice. BMOFs show a synergistic effect of two metal centres and enhanced properties compared to MOFs. By controlling the composition and relative distribution of two metal ions in the lattice the structure, morphology, and topology of BMOFs could be regulated resulting in an improvement in the tunability of pore structure, activity, and selectivity. Thus, developing BMOFs and BMOF incorporated membranes for applications such as adsorption, separation, catalysis, and sensing is a promising strategy to mitigate environmental pollution and address the looming energy crisis. Herein we present an overview of recent advancements in the area of BMOFs and a comprehensive review of BMOF incorporated membranes reported to date. The scope, challenges as well as future perspectives for BMOFs and BMOF incorporated membranes are presented.

10.
PLoS One ; 18(1): e0280847, 2023.
Article in English | MEDLINE | ID: mdl-36716329

ABSTRACT

The current study investigates the effectiveness of phytocompounds from the whole green jackfruit flour methanol extract (JME) against obesity-linked diabetes mellitus using integrated network pharmacology and molecular modeling approach. Through network pharmacology, druglikeness and pharmacokinetics, molecular docking simulations, GO analysis, molecular dynamics simulations, and binding free energy analyses, it aims to look into the mechanism of the JME phytocompounds in the amelioration of obesity-linked diabetes mellitus. There are 15 predicted genes corresponding to the 11 oral bioactive compounds of JME. The most important of these 15 genes was MAPK3. According to the network analysis, the insulin signaling pathway has been predicted to have the strongest affinity to MAPK3 protein, which was chosen as the target. With regard to the molecular docking simulation, the greatest notable binding affinity for MAPK3 was discovered to be caffeic acid (-8.0 kJ/mol), deoxysappanone B 7,3'-dimethyl ether acetate (DBDEA) (-8.2 kJ/mol), and syringic acid (-8.5 kJ/mol). All the compounds were found to be stable inside the inhibitor binding pocket of the enzyme during molecular dynamics simulation. During binding free energy calculation, all the compounds chiefly used Van der Waal's free energy to bind with the target protein (caffeic acid: 102.296 kJ/mol, DBDEA: -104.268 kJ/mol, syringic acid: -100.171 kJ/mol). Based on these findings, it may be inferred that the reported JME phytocompounds could be used for in vitro and in vivo research, with the goal of targeting MAPK3 inhibition for the treatment of obesity-linked diabetes mellitus.


Subject(s)
Artocarpus , Diabetes Mellitus , Flour , Methanol , Molecular Docking Simulation , Molecular Dynamics Simulation , Network Pharmacology , Obesity/drug therapy , Mitogen-Activated Protein Kinase 3/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology
11.
J Biomol Struct Dyn ; 41(22): 13078-13097, 2023.
Article in English | MEDLINE | ID: mdl-36695109

ABSTRACT

Phytochemical-based drug discovery against the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has been the focus of the current scenario. In this context, we aimed to perform the phytochemical profiling of Magnolia champaka, an evergreen tree from the Magnoliaceae family, in order to perform a virtual screening of its phytoconstituents against different biological targets of SARS-CoV-2. The phytochemicals identified from the ethanol extract of M. champaka leaves using liquid chromatography-mass spectroscopy (LC-MS) technique were screened against SARS-CoV-2 spike glycoprotein (PDB ID: 6M0J), main protease/Mpro (PDB ID: 6LU7), and papain-like protease/PLpro (PDB ID: 7CMD) through computational tools. The experimentation design included molecular docking simulation, molecular dynamics simulation, and binding free energy calculations. Through molecular docking simulation, we identified poncirin as a common potential inhibitor of all the above-mentioned target proteins. In addition, molecular dynamics simulations, binding free energy calculations, and PCA analysis also supported the outcomes of the virtual screening. By the virtue of all the in silico results obtained, poncirin could be taken for in vitro and in vivo studies in near future.Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 , Magnolia , SARS-CoV-2 , Molecular Docking Simulation , Molecular Dynamics Simulation , Papain , Peptide Hydrolases , Phytochemicals/pharmacology , Protease Inhibitors
12.
J Biomol Struct Dyn ; 41(20): 10869-10884, 2023 12.
Article in English | MEDLINE | ID: mdl-36576118

ABSTRACT

The spike (S) glycoprotein and nucleocapsid (N) proteins are the crucial pathogenic proteins of the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS CoV-2) virus during its interaction with the host. Even FDA-approved drugs like dexamethasone and grazoprevir are not able to curb the viral progression inside the host and are reported with adverse effects on body metabolism. In this context, we aim to report corilagin a novel, potential dual inhibitor of S and N proteins from Terminalia chebula. The bioactive compounds of T. chebula were subjected to a series of computational investigations including molecular docking simulations, molecular dynamics (MD) simulations, binding free energy calculations, and PASS pharmacological analysis. The results obtained from these studies revealed that corilagin was highly interactive with the S (-8.9 kcal/mol) and N (-9.2 kcal/mol) proteins, thereby showing dual inhibition activity. It was also found to be stable enough to induce biological activity inside the inhibitor binding pocket of the target enzymes throughout the dynamics simulation run for 100 ns. This is also confirmed by the changes in the protein conformations, evaluated using free energy landscapes. Outcomes from this investigation identify corilagin as the lead potential dual inhibitor of S and N proteins of SARS-CoV-2, which could be taken for biological studies in near future.Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 , Terminalia , SARS-CoV-2 , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors
13.
Mycology ; 13(4): 243-256, 2022.
Article in English | MEDLINE | ID: mdl-36405338

ABSTRACT

Plant-based secondary metabolite production system is well established. However, host-endophyte interaction in the production of secondary metabolite is a new less exploited area that is overcoming barriers and evolving as one of the prospective fields. Endophytes such as bacteria or fungi have the ability to produce some of the secondary metabolites that mimic the plant metabolites therefore escaping the host defence system. Coumarin is one such metabolite with immense biological functions. Most of the studies have demonstrated coumarin production from fungal endophytes but not bacterial endophytes. Herein, we present an overview of all the coumarin derivatives produced from endophytic sources and their biosynthetic pathways. Furthermore, the review also throws light on the isolation of these coumarins and different derivatives with respect to their biological activity. The biotransformation of coumarin derivatives by the action of endophytic fungi is also elaborated. The present review provides an insight on the challenges faced in the coumarin production through fungal endophytes.

14.
Molecules ; 27(19)2022 Sep 22.
Article in English | MEDLINE | ID: mdl-36234759

ABSTRACT

In the present study, the anti-diabetic potential of Ocimum tenuiflorum was investigated using computational techniques for α-glucosidase, α-amylase, aldose reductase, and glycation at multiple stages. It aimed to elucidate the mechanism by which phytocompounds of O. tenuiflorum treat diabetes mellitus using concepts of druglikeness and pharmacokinetics, molecular docking simulations, molecular dynamics simulations, and binding free energy studies. Isoeugenol is a phenylpropene, propenyl-substituted guaiacol found in the essential oils of plants. During molecular docking modelling, isoeugenol was found to inhibit all the target enzymes, with a higher binding efficiency than standard drugs. Furthermore, molecular dynamic experiments revealed that isoeugenol was more stable in the binding pockets than the standard drugs used. Since our aim was to discover a single lead molecule with a higher binding efficiency and stability, isoeugenol was selected. In this context, our study stands in contrast to other computational studies that report on more than one compound, making it difficult to offer further analyses. To summarize, we recommend isoeugenol as a potential widely employed lead inhibitor of α-glucosidase, α-amylase, aldose reductase, and glycation based on the results of our in silico studies, therefore revealing a novel phytocompound for the effective treatment of hyperglycemia and diabetes mellitus.


Subject(s)
Diabetes Mellitus , Oils, Volatile , Aldehyde Reductase , Eugenol/analogs & derivatives , Guaiacol , Molecular Docking Simulation , Ocimum sanctum , alpha-Amylases , alpha-Glucosidases
15.
Pharm Biol ; 60(1): 1656-1668, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36052952

ABSTRACT

CONTEXT: Michelia champaca L. (Magnoliaceae) has been known since ancient times for its rich medicinal properties. OBJECTIVE: The ethanol extract of Michelia champaca leaves (EEMC) was evaluated on depression and anxiety using in vivo and in silico studies. MATERIALS AND METHODS: Swiss albino mice were divided into control, standard, 100 and 200 mg/kg b.w. EEMC groups and for drug administration using oral gavage. The antidepressant activity was evaluated using forced swim test (FST) and tail suspension test (TST) whereas the anxiolytic activity through elevated plus maze and light and dark tests. The in silico studies included molecular docking against human potassium channel KCSA-FAB and human serotonin transporter, and ADME/T analysis. RESULTS: Open arm duration and entries were comparable between 200 mg/kg b.w. group (184.45 ± 1.00 s and 6.25 ± 1.11, respectively) and that of diazepam treated group (180.02 s ± 0.40 and 6.10 ± 0.05, respectively). Time spent in the light cubicle was higher (46.86 ± 0.03%), similar to that of diazepam (44.33 ± 0.64%), suggesting its potent anxiolytic activity. A delayed onset of immobility and lowered immobility time was seen at both the treatment doses (FST: 93.7 ± 1.70 and 89.1 ± 0.40 s; TST: 35.05 ± 2.75 and 38.50 ± 4.10 s) and the standard drug imipramine (FST: 72.7 ± 3.72 and TST: 30.01 ± 2.99 s), indicative of its antidepressant ability. In silico studies predicted doripenem to induce anxiolytic and antidepressant activity by inhibiting human potassium channel KCSA-FAB and human serotonin transporter proteins, respectively. CONCLUSIONS: EEMC is a rich source of bioactive compounds with strong antidepressant and anxiolytic properties.


Subject(s)
Anti-Anxiety Agents , Magnoliaceae , Animals , Anti-Anxiety Agents/pharmacology , Anti-Anxiety Agents/therapeutic use , Antidepressive Agents/pharmacology , Depression/drug therapy , Diazepam , Humans , Mice , Molecular Docking Simulation , Phytochemicals , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Potassium Channels , Serotonin Plasma Membrane Transport Proteins
16.
Mar Drugs ; 20(9)2022 Aug 31.
Article in English | MEDLINE | ID: mdl-36135748

ABSTRACT

N-methyl-D-aspartate (NMDA) receptors play a critical role in activity-dependent dendritic arborization, spinogenesis, and synapse formation by stimulating calcium-dependent signaling pathways. Previously, we have shown that brevetoxin 2 (PbTx-2), a voltage-gated sodium channel (VGSC) activator, produces a concentration-dependent increase in intracellular sodium [Na+]I and increases NMDA receptor (NMDAR) open probabilities and NMDA-induced calcium (Ca2+) influxes. The objective of this study is to elucidate the downstream signaling mechanisms by which the sodium channel activator PbTx-2 influences neuronal morphology in murine cerebrocortical neurons. PbTx-2 and NMDA triggered distinct Ca2+-influx pathways, both of which involved the NMDA receptor 2B (GluN2B). PbTx-2-induced neurite outgrowth in day in vitro 1 (DIV-1) neurons required the small Rho GTPase Rac1 and was inhibited by both a PAK1 inhibitor and a PAK1 siRNA. PbTx-2 exposure increased the phosphorylation of PAK1 at Thr-212. At DIV-5, PbTx-2 induced increases in dendritic protrusion density, p-cofilin levels, and F-actin throughout the dendritic arbor and soma. Moreover, PbTx-2 increased miniature excitatory post-synaptic currents (mEPSCs). These data suggest that the stimulation of neurite outgrowth, spinogenesis, and synapse formation produced by PbTx-2 are mediated by GluN2B and PAK1 signaling.


Subject(s)
Neurons , Receptors, N-Methyl-D-Aspartate , p21-Activated Kinases , Actin Depolymerizing Factors/metabolism , Actins/metabolism , Animals , Calcium/metabolism , Marine Toxins , Mice , N-Methylaspartate , Neuronal Outgrowth , Neurons/drug effects , Neurons/metabolism , Oxocins , RNA, Small Interfering/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Sodium/metabolism , Sodium Channel Agonists/metabolism , Voltage-Gated Sodium Channels/metabolism , p21-Activated Kinases/metabolism , rho GTP-Binding Proteins/metabolism
17.
RSC Adv ; 12(37): 24192-24207, 2022 Aug 22.
Article in English | MEDLINE | ID: mdl-36128541

ABSTRACT

A highly stereoselective, three-component method has been developed to synthesize pyrrolidine and pyrrolizidine containing spirooxindole derivatives. The interaction between the dipolarophile α,ß-unsaturated carbonyl compounds and the dipole azomethine ylide formed in situ by the reaction of 1,2-dicarbonyl compounds and secondary amino acids is referred to as the 1,3-dipolar cycloaddition reaction. The reaction conditions were optimized to achieve excellent stereo- and regioselectivity. Shorter reaction time, simple work-up and excellent yields are the salient features of the present approach. Various spectroscopic methods and single crystal X-ray diffraction examinations of one example of compound 6i validated the stereochemistry of the expected products. The anti-diabetic activity of the newly synthesized spirooxindole derivatives was tested against the α-glucosidase and α-amylase enzymes. Compound 6i was found to exhibit potent inhibition activity against α-glucosidase and α-amylase enzymes which is further evidenced by molecular docking studies.

18.
Molecules ; 27(16)2022 Aug 12.
Article in English | MEDLINE | ID: mdl-36014373

ABSTRACT

Diabetes mellitus is a major global health concern in the current scenario which is chiefly characterized by the rise in blood sugar levels or hyperglycemia. In the context, DPP4 enzyme plays a critical role in glucose homeostasis. DPP4 targets and inactivates incretin hormones such as glucagon-like peptide-1 (GLP-1) and gastric inhibitory polypeptide (GIP) as physiological substrates, which are essential to regulate the amount of insulin that is secreted after eating. Since the inactivation of incretins occurs, the hyperglycemic conditions continue to rise, and result in adverse physiological conditions linked with diabetes mellitus. Hence, inhibition of DPP4 has been the center of focus in the present antidiabetic studies. Although few DPP4 inhibitor drugs, such as alogliptin, saxagliptin, linagliptin, and sitagliptin, are available, their adverse effects on human metabolism are undeniable. Therefore, it becomes essential for the phytochemical intervention of the disease using computational methods prior to performing in vitro and in vivo studies. In this regard, we used an in-silico approach involving molecular docking, molecular dynamics simulations, and binding free energy calculations to investigate the inhibitory potential of Ocimum tenuiflorum phytocompounds against DPP4. In this regard, three phytocompounds (1S-α-pinene, ß-pinene, and dehydro-p-cymene) from O. tenuiflorum have been discovered as the potential inhibitors of the DPP4 protein. To summarize, from our in-silico experiment outcomes, we propose dehydro-p-cymene as the potential lead inhibitor of DPP4 protein, thereby discovering new a phytocompound for the effective management of hyperglycemia and diabetes mellitus. The reported compound can be taken for in vitro and in vivo analyses in near future.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetes Mellitus , Dipeptidyl-Peptidase IV Inhibitors , Hyperglycemia , Computers , Diabetes Mellitus, Type 2/drug therapy , Dipeptidyl Peptidase 4/metabolism , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Gastric Inhibitory Polypeptide/metabolism , Humans , Hypoglycemic Agents/pharmacology , Incretins , Molecular Docking Simulation , Molecular Dynamics Simulation , Ocimum sanctum/metabolism
19.
Sci Adv ; 8(29): eabo6574, 2022 Jul 22.
Article in English | MEDLINE | ID: mdl-35867797

ABSTRACT

Cocaine-associated memories induce cravings and interfere with the ability of users to cease cocaine use. Reducing the strength of cue-drug memories by facilitating extinction may have therapeutic value for the treatment of cocaine addiction. Here, we demonstrate the expression of GluN1/2A/2C NMDA receptor currents in astrocytes in the nucleus accumbens core. Selective ablation of GluN1 subunit from astrocytes in the nucleus accumbens enhanced extinction of cocaine preference memory but did not affect cocaine conditioning or reinstatement. Repeated cocaine exposure up-regulated GluN2C subunit expression and increased astrocytic NMDA receptor currents. Furthermore, intra-accumbal inhibition of GluN2C/2D-containing receptors and GluN2C subunit deletion facilitated extinction of cocaine memory. Cocaine-induced neuroadaptations including dendritic spine maturation and AMPA receptor recruitment were absent in GluN2C knockout mice. Impaired retention of cocaine preference memory in GluN2C knockout mice was restored by exogenous administration of recombinant glypican 4. Together, these results identify a previously unknown astrocytic GluN2C-containing NMDA receptor mechanism underlying maintenance of cocaine preference memory.

20.
Sci Rep ; 12(1): 10776, 2022 06 24.
Article in English | MEDLINE | ID: mdl-35750702

ABSTRACT

Treatment of industrial wastewater is one of the biggest challenges that mankind is facing today to prevent environmental pollution and its associated adverse effects on human health. Environmentalists across the world have given a clarion call for dye degradation, wastewater treatment and their effective management in our surrounding habitats. Despite significant progress in the development of new water treatment technologies, new materials haven't matured enough for large scale industrial applications. Hence, the development of new scalable and sustainable multifunctional materials having the potential to treat wastewater and generate energy is the need of the hour. In this direction, novel 3D-flower shaped KTaO3 (3D-F-KT) material has been synthesized using areca seed powder as a green fuel. This new material has been successfully applied for the treatment of industrial wastewater contaminated with Rose Bengal. The efficiency of the material was analysed using several parameters like catalytic loading, dye concentration, kinetic and scavenging experiments, photostability, effect of co-existing ions and recyclability. In addition, the material was subjected to optical studies and H2 generation, making it a highly versatile multifunctional material, exhibiting a degradation efficiency of 94.12% in a short span of 150 min and a photocatalytic H2 generation efficiency of 374 µmol g-1 through water splitting. With an immense potential, KTaO3 presents itself as a multifunctional catalyst that can be scaled up for a variety of industrial applications ranging from wastewater treatment to energy generation and storage.


Subject(s)
Calcium Compounds , Wastewater , Humans , Oxides , Titanium
SELECTION OF CITATIONS
SEARCH DETAIL
...