Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(6)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38542218

ABSTRACT

This study addresses the pressing issues of energy production and consumption, in line with global sustainable development goals. Focusing on the potential of alcohols as "green" alternatives to traditional fossil fuels, especially in biofuel applications, we investigate the thermochemical properties of three alcohols (n-propanol, n-butanol, n-pentanol) blended with sunflower oil. The calorimetric analysis allows for the experimental determination of excess enthalpies in pseudo-binary mixtures at 303.15 K, revealing similarities in the trends of the curves (dependence on concentrations) but with different values for the excess enthalpies for each mixture. Despite the structural differences of the alcohols studied, the molar excess enthalpy values exhibit uniformity, suggesting consistent mixing behavior. The peak values of excess enthalpies for systems with sunflower oil and n-propanol, n-butanol and n-pentanol are, respectively, 3255.2 J/mole, 3297.4 J/mole and 3150.1 J/mole. Both the NRTL and Redlich-Kister equations show satisfactory agreement with the obtained values.


Subject(s)
Alcohols , Biofuels , Pentanols , Alcohols/chemistry , Sunflower Oil , 1-Propanol , 1-Butanol
2.
Int J Biol Macromol ; 263(Pt 1): 130177, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38360229

ABSTRACT

Polyelectrolyte complexes (PECs) based on polysaccharides, including hyaluronic acid (HA) and chitosan (CS), are promising delivery systems for antimicrobial agents, including oral administration of the peptide antibiotic colistin (CT). Modification of CS with different targeting ligands to improve intestinal permeability is a suitable way to improve the oral bioavailability of polyelectrolyte particles. This study describes the procedure for obtaining CT-containing PECs based on HA and CS modified with cyanocobalamin (vitamin B12). In this case, vitamin B12 is used as a targeting ligand because it is absorbed in the ileum via specific transporter proteins. The resulting PECs had a hydrodynamic size of about 284 nm and a positive ζ-potential of about 26 mV; the encapsulation efficiency was 88.2 % and the CT content was 42.2 µg/mg. The developed systems provided a two-phase drug release: about 50 % of the CT was released in 0.5-1 h, and about 60 % of the antibiotic was cumulatively released in 5 h. The antimicrobial activity of encapsulated CT was maintained at the same level as the pure drug for at least 24 h (minimum inhibitory concentration against Pseudomonas aeruginosa was 2 µg/mL for both). In addition, the apparent permeability coefficient of CT in the PEC formulation was 2.4 × 10-6 cm/s. Thus, the incorporation of CT into HA- and vitamin B12-modified CS-based PECs can be considered as a simple and convenient method to improve the oral delivery of CT.


Subject(s)
Chitosan , Polyelectrolytes/chemistry , Chitosan/chemistry , Drug Carriers/chemistry , Hyaluronic Acid , Colistin/pharmacology , Vitamin B 12 , Administration, Oral , Anti-Bacterial Agents/pharmacology
3.
Int J Mol Sci ; 24(6)2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36982213

ABSTRACT

The data on molar excess enthalpies, HmE, for the binary mixtures acetic acid + n-butanol, acetic acid + n-butyl acetate and n-butanol + n-butyl acetate at 313.15 K and atmospheric pressure were obtained with use of the C80 isothermal mixing calorimeter (Setaram). The correlation of the data was carried out using the NRTL model and Redlich-Kister equation. A comparative analysis with the literature data on all available binary subsystems of the quaternary system was carried out. Other thermodynamic properties (Cp,mE, SmE, ΔmixSm, GmE and ΔmixGm) of the binary systems were estimated using literature data and well-known formulas of classical thermodynamics.


Subject(s)
1-Butanol , Butanols , Acetic Acid , Water , Thermodynamics , Atmospheric Pressure
4.
J Therm Anal Calorim ; 147(9): 5511-5518, 2022.
Article in English | MEDLINE | ID: mdl-35283663

ABSTRACT

The paper reports the spectrofluorimetric and calorimetric study of binding of two hydrophobic biologically active molecules with antioxidant ability, flavonoids quercetin, and curcumin, to human serum albumin (HSA) in water, aqueous DMSO (0.05 and 0.1 mol. fraction of DMSO), and aqueous ethanol (0.05 mol. fraction of EtOH). Both flavonoids induce the quenching of HSA fluorescence. The stability constants of associates, as well as the changes in enthalpy of the reaction between quercetin and protein, were evaluated. The influence of solvent composition and additions of hydroxypropyl-ß-cyclodextrin as a solubilizer of hydrophobic molecules, on the association processes is discussed. Supplementary Information: The online version contains supplementary material available at 10.1007/s10973-022-11216-8.

5.
Int J Mol Sci ; 22(16)2021 Aug 04.
Article in English | MEDLINE | ID: mdl-34445088

ABSTRACT

Improving the therapeutic characteristics of antibiotics is an effective strategy for controlling the growth of multidrug-resistant Gram-negative microorganisms. The purpose of this study was to develop a colistin (CT) delivery system based on hyaluronic acid (HA) and the water-soluble cationic chitosan derivative, diethylaminoethyl chitosan (DEAECS). The CT delivery system was a polyelectrolyte complex (PEC) obtained by interpolymeric interactions between the HA polyanion and the DEAECS polycation, with simultaneous inclusion of positively charged CT molecules into the resulting complex. The developed PEC had a hydrodynamic diameter of 210-250 nm and a negative surface charge (ζ-potential = -19 mV); the encapsulation and loading efficiencies were 100 and 16.7%, respectively. The developed CT delivery systems were characterized by modified release (30-40% and 85-90% of CT released in 15 and 60 min, respectively) compared to pure CT (100% CT released in 15 min). In vitro experiments showed that the encapsulation of CT in polysaccharide carriers did not reduce its antimicrobial activity, as the minimum inhibitory concentrations against Pseudomonas aeruginosa of both encapsulated CT and pure CT were 1 µg/mL.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Chitosan/chemistry , Colistin/administration & dosage , Drug Carriers/chemistry , Hyaluronic Acid/chemistry , Polyelectrolytes/chemistry , Anti-Bacterial Agents/pharmacology , Colistin/pharmacology , Humans , Pseudomonas Infections/drug therapy , Pseudomonas aeruginosa/drug effects
6.
Int J Biol Macromol ; 187: 157-165, 2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34298050

ABSTRACT

Nanotechnology-based modification of known antimicrobial agents is a rational and straightforward way to improve their safety and effectiveness. The aim of this study was to develop colistin (CT)-loaded polymeric carriers based on hyaluronic acid (HA) for potential application as antimicrobial agents against multi-resistant gram-negative microorganisms (including ESKAPE pathogens). CT-containing particles were obtained via a polyelectrolyte interaction between protonated CT amino groups and HA carboxyl groups (the CT-HA complex formation constant [logKCT-HA] was about 5.0). The resulting polyelectrolyte complexes had a size of 210-250 nm and a negative charge (ζ-potential -19 mV), with encapsulation and loading efficiencies of 100% and 20%, respectively. The developed CT delivery systems were characterized by modified release (45% and 85% of CT released in 15 and 60 min, respectively) compared to pure CT (100% CT released in 15 min). In vitro tests showed that the encapsulation of CT in polymer particles did not reduce its pharmacological activity; the minimum inhibitory concentrations of both encapsulated CT and pure CT were 1 µg/mL (against Pseudomonas aeruginosa).


Subject(s)
Anti-Infective Agents , Colistin , Hyaluronic Acid , Polyelectrolytes , Pseudomonas aeruginosa/growth & development , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Colistin/chemistry , Colistin/pharmacology , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Polyelectrolytes/chemistry , Polyelectrolytes/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...