Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
J Chromatogr A ; 1730: 465144, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38996513

ABSTRACT

Ionic liquids, i.e., organic salts with a low melting point, can be used as gas chromatographic liquid stationary phases. These stationary phases have some advantages such as peculiar selectivity, high polarity, and thermostability. Many previous works are devoted to such stationary phases. However, there are still no large enough retention data sets of structurally diverse compounds for them. Consequently, there are very few works devoted to quantitative structure-retention relationships (QSRR) for ionic liquid-based stationary phases. This work is aimed at closing this gap. Three ionic liquids with substituted pyridinium cations are considered. We provide large enough data sets (123-158 compounds) that can be used in further works devoted to QSRR and related methods. We provide a QSRR study using this data set and demonstrate the following. The retention index for a polyethylene glycol stationary phase (denoted as RI_PEG), predicted using another model, can be used as a molecular descriptor. This descriptor significantly improves the accuracy of the QSRR model. Both deep learning-based and linear models were considered for RI_PEG prediction. The ability to predict the retention indices for ionic liquid-based stationary phases with high accuracy is demonstrated. Particular attention is paid to the reproducibility and reliability of the QSRR study. It was demonstrated that adding/removing several compounds, small perturbations of the data set can considerably affect the results such as descriptor importance and model accuracy. These facts have to be considered in order to avoid misleading conclusions. For the QSRR research, we developed a software tool with a graphical user interface, which we called CHERESHNYA. It is intended to select molecular descriptors and construct linear equations connecting molecular descriptors with gas chromatographic retention indices for any stationary phase. The software allows the user to generate several hundred molecular descriptors (one-dimensional and two-dimensional). Among them, predicted retention indices for popular stationary phases such as polydimethylsiloxane and polyethylene glycol are used as molecular descriptors. Various methods for selecting (and assessing the importance of) molecular descriptors have been implemented, in particular the Boruta algorithm, partial least squares, genetic algorithms, L1-regularized regression (LASSO) and others. The software is free, open-source and available online: https://github.com/mtshn/chereshnya.


Subject(s)
Ionic Liquids , Pyridinium Compounds , Software , Ionic Liquids/chemistry , Chromatography, Gas/methods , Pyridinium Compounds/chemistry , Reproducibility of Results , Quantitative Structure-Activity Relationship , Linear Models , Polyethylene Glycols/chemistry
2.
Inorg Chem ; 62(46): 18955-18969, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37927081

ABSTRACT

The Zr-monosubstituted Keggin-type dimeric phosphotungstate (Bu4N)8[{PW11O39Zr(µ-OH)(H2O)}2] (1) efficiently catalyzes epoxidation of C═C bonds in various kinds of alkenes, including terminal ones, with aqueous H2O2 as oxidant. Less sterically hindered double bonds are preferably epoxidized despite their lower nucleophilicity. Basic additives (Bu4NOH) in the amount of 1 equiv per dimer 1 suppress H2O2 unproductive decomposition, increase substrate conversion, improve yield of heterolytic oxidation products and oxidant utilization efficiency, and also affect regioselectivity of epoxidation, enhancing oxygen transfer to sterically hindered electron-rich C═C bonds. Acid additives produce a reverse effect on the substrate conversion and H2O2 efficiency. The reaction mechanism was explored using a range of test substrates, kinetic, and spectroscopic tools. The opposite effects of acid and base additives on alkene epoxidation and H2O2 degradation have been rationalized in terms of their impact on hydrolysis of 1 to form monomeric species, [PW11O39Zr(OH)(H2O)x]4- (1-M, x = 1 or 2), which favors H2O2 homolytic decomposition. The interaction of 1 with H2O2 has been investigated by HR-ESI-MS, ATR-FT-IR, and 31P NMR spectroscopic techniques. The combination of spectroscopic studies and kinetic modeling implicated the existence of two types of dimeric peroxo complexes, [Zr2(µ-η2:η2-O2){PW11O39}2(H2O)x]]8- and [{Zr(µ-η2-O2)}2(PW11O39)2(H2O)y]10-, along with monomeric Zr (hydro)peroxo species that begin to dominate at a high excess of H2O2. Both dimeric µ-η2-peroxo intermediates are inert toward alkenes under stoichiometric conditions. V-shape Hammett plots obtained for epoxidation of p-substituted styrenes suggested a biphilic nature of the active oxidizing species, which are monomeric Zr-hydroperoxo and peroxo species. Small basic additives increase the electrophilicity of the catalyst and decrease its nucleophilicity. HR-ESI-MS has identified a dimeric, most likely, bridging hydroperoxo species [{PW11O39Zr}2(µ-O)(µ-OOH)]9-, which may account for the improved epoxidation selectivity and regioselectivity toward sterically hindered C═C bonds.

3.
J Chromatogr A ; 1707: 464270, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37573728

ABSTRACT

The study demonstrates the possibility of using ionic liquids (IL) as a stationary liquid phase (SLP) for gas chromatographic (GC) multicapillary columns (MCC). Three types of IL of three classes were employed as SLP: Imidazolium, Pyridinium and Quinolinium. Dependences of the MCCs efficiency on the carrier gas flow rate were obtained. Highest efficiency was achieved on the column with 1,2-Dimethyl-3-propylimidazolium bis(trifluoromethylsulfonyl)imide (DiMPrIm). For this column, dependence of the efficiency on the sample volume has been investigated. Also the loading capacity of the MCC with DiMPrIm was determined. Separation of fatty acid esters and phenols served as an example to demonstrate that using ionic liquids as SLP for МСС make it possible to combine fast separations with high selectivity.


Subject(s)
Ionic Liquids , Ionic Liquids/chemistry , Chromatography, Gas/methods
4.
Org Lett ; 25(9): 1359-1363, 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36825896

ABSTRACT

Direct oxygenation of nonactivated aliphatic C(sp3)-H groups with peroxycarboxylic acids in the presence of palladium tris(pyridylmethyl)amine complex (0.6 mol %) is reported, providing the corresponding hydroxylated derivatives in up to 94% yields. The oxidation of 3° C-H groups occurs stereospecifically, with the catalyst system demonstrating extremely high sensitivity to electronic effects (adamantane oxidation: 3°:2° up to >300). This suggests potential applications for the 3°-regioselective oxidative functionalization of complex molecules of natural origin.

5.
Org Lett ; 24(48): 8764-8768, 2022 12 09.
Article in English | MEDLINE | ID: mdl-36450152

ABSTRACT

Herein, we report the direct selective C-H lactonization of fatty acids (C5-C16), catalyzed by manganese(II) complexes bearing bis-amino-bis-pyridine ligands. The catalyst system uses the environmentally benign hydrogen peroxide as oxidant and exhibits high efficiency (100-200 TON), providing under optimized conditions γ-lactones in 60-90% yields. Remarkably, by changing the reaction conditions, the oxidation of hexanoic acid can be diverted toward formation of δ-caprolactone in up to 67% yield. Furthermore, the possibility of obtaining (ω-1)-hydroxy derivatives from linear C7-C10 acids in up to 48% yields has been demonstrated.

6.
Orig Life Evol Biosph ; 49(3): 187-196, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31642022

ABSTRACT

This work addresses the supramolecular self-organization in the xerogels of formose reaction products. The UV-induced formose reaction was held in over-saturated formaldehyde solutions at 70∘C without a catalyst. The solutions of the obtained carbohydrates were dried on a glass slide, and the obtained xerogels demonstrated a prominent optical activity, while the initial solutions were optically inactive. The xerogels contained highly elongated crystalline elements of a helical structure as well as the isometric ones. Thus xerogel formation was accompanied by a spontaneous resolution of enantiomers and separation of different-shaped supramolecular structures. The thick helices were twisted of thinner ones, while the latter were twisted of elementary structures having a diameter much smaller than 400 nm. Similar structural hierarchy is typical of biological macromolecules (DNA, proteins, and cellulose). Summarizing the obtained results, we proposed a hypothetical mechanism explaining the amplification of the initial enantiomeric excess, as well as chiral and chemical purification of the substances which were essential for the evolution of Life to start.


Subject(s)
Carbohydrates/chemistry , Formaldehyde/chemistry , Gels , Origin of Life , Stereoisomerism
7.
J Sep Sci ; 39(19): 3754-3760, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27494745

ABSTRACT

We describe the application of columns with highly polar stationary liquid phases based on pyridinium ionic liquids for the two-dimensional chromatography separation of bio-oil and product of coal pyrolysis. By using inverse combination columns-a first ionic liquid column and a second nonpolar column-good separation results have been obtained. In the analysis of coal pyrolysis products, the suggested approach provides a much better resolution between components in comparison with a less polar first-dimension column (based on polyethylene glycol). A good selectivity for the peaks of phenols is observed, and the group of phenols is well detached and separated from the group of diaromatics. A good separation picture was obtained also for bio-oil, the groups of phenols and guaiacol derivatives are distinguished with good resolution of substances within each group.

SELECTION OF CITATIONS
SEARCH DETAIL