Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
2.
Sci Rep ; 14(1): 12073, 2024 05 27.
Article in English | MEDLINE | ID: mdl-38802442

ABSTRACT

Carbon nanotubes (CNTs) have the potential to serve as delivery systems for medicinal substances and gene treatments, particularly in cancer treatment. Co-delivery of curcumin (CUR) and Methotrexate (MTX) has shown promise in cancer treatment, as it uses fewer drugs and has fewer side effects. This study used MTX-conjugated albumin (BSA)-based nanoparticles (BSA-MTX) to enhance and assess the efficiency of CUR. In-vitro cytotoxicity tests, DLS, TEM, FTIR, UV/Vis, SEM, and DSC studies assessed the formulations' physical and chemical properties. The Proteinase K enzyme was used to severe amidic linkages between MTX and BSA. The findings demonstrated the efficacy of using ƒ-MWCNT-CUR-BSA-MTX as a vehicle for efficient co-delivery of CUR and MTX in cancer treatment. The MTT colorimetric method was used to evaluate the effect of chemical and medicinal compounds. Cell division was studied using the MTT method to investigate the effect of pure MWCNT, pure CUR, MTX-BSA, and ƒ-MWCNT-CUR-MTX-BSA. Studies on cell lines have shown that the combination of curcumin and MTX with CNT can increase and improve the effectiveness of both drugs against cancer. A combination of drugs curcumin and methotrexate simultaneously had a synergistic effect on MCF-7 cells, which indicated that these drugs could potentially be used as a strategy for both prevention and treatment of breast cancer. Also, ƒ-MWCNT-CUR-MTX-BSA was found to have a significant effect on cancer treatment with minimal toxicity compared to pure curcumin, pure MTX-BSA, MTX, and ƒ-MWCNT alone. Unique properties such as a high ratio of specific surface area to volume, high chemical stability, chemical adsorption ability, high capacity of drug and biomolecules of carbon nanotubes, as well as multiple drug loading at the same time The combination of ƒ-MWCNT-CUR-BSA MTX significantly impacts cancer therapy), are desirable as an alternative option for targeted drug delivery and high therapeutic efficiency.


Subject(s)
Curcumin , Methotrexate , Nanotubes, Carbon , Nanotubes, Carbon/chemistry , Methotrexate/chemistry , Methotrexate/pharmacology , Methotrexate/administration & dosage , Humans , Curcumin/pharmacology , Curcumin/chemistry , Curcumin/administration & dosage , Nanoparticles/chemistry , Drug Delivery Systems , Serum Albumin, Bovine/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/administration & dosage , MCF-7 Cells , Drug Carriers/chemistry , Cell Survival/drug effects , Cell Line, Tumor
3.
J Biomater Sci Polym Ed ; 34(18): 2537-2550, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37768315

ABSTRACT

To conquer the low water solubility and bioavailability of curcumin (CUR), to corroborate its functional qualities and to broaden its applicability in the pharmaceutical sector, numerous nanoscale methods have been widely exploited for its administration. Because of its polycystic, biodegradable, biocompatibility, non-toxicity, and non-allergenic properties, bovine serum albumin (BSA) and glycine (Gly) have been actively investigated as natural biopolymers for decades. Various BSA and Gly-based nanocarriers with unique features for CUR delivery, such as magnetic ferrite nanoparticles, are being developed (MNPs). In this work, magnesium ferrite (MgFe2O4)/BSA and nickel ferrite (NiFe2O4)/Gly nanocomposites loaded with CUR (drug model) were manufactured for the first time using a chemical co-precipitation approach to create biocompatible drug nanocarriers. It was found that the synthesized MgFe2O4/BSA and NiFe2O4/Gly nanoparticles have a uniform particle distribution and their size is much less than 100 nm. Saturation magnetization in MgFe2O4 and NiFe2O4 reaches 13.07 and 33.4 emu/g the remarkable peak of magnetization decreases to 10.99 and 32.36 emu/g after the addition of polymers. These analyses also showed the presence of chemical bonds in the structure of the nanocomposite. The curcumin diffusion process in NPs were determined using a mathematical modeling. The yielding of the product for MgFe2O4/BSA and NiFe2O4/Gly in 200 h is about 72 and 63%, respectively. Also, regressed relative diffusivities (D/R2), including effective steric hindrance, were determined as 5.75 × 10-4 and 2.72 × 10-4 h-1 for MgFe2O4/BSA and NiFe2O4/Gly, respectively. It shows that there is a significant steric barrier that significantly deviates from the molecular diffusion of the liquid. As a result, the low effective release of curcumin in the particles is more noticeable. Our study demonstrated the effective relationship between the polymer architecture and the biophysical properties of the resulting nanoparticles and shed light on new approaches for the design of efficient NP-based drug carriers.


Subject(s)
Curcumin , Nanoparticles , Curcumin/chemistry , Serum Albumin, Bovine/chemistry , Polymers , Delayed-Action Preparations , Nanoparticles/chemistry , Drug Carriers/chemistry , Magnetic Phenomena , Particle Size
4.
Heliyon ; 9(6): e16648, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37260887

ABSTRACT

The widespread use of hydrogen as a vehicle fuel has prompted us to develop a new nanocomposite by immobilizing of tin ferrite nanoparticles (SnFe2O4) on the surface of multi-walled carbon nanotubes (abbreviated as MWCNTS) for the first time. The prepared nanocomposite powder (SnFe2O4@MWCNTS) was investigated utilizing various microscopy and spectroscopy methods, such as FT-IR, XRD, SEM, EDX, and BET techniques. Moreover, the electrochemical property of SnFe2O4@MWCNTS nanocomposite was investigated by cyclic voltammogram (CV) and charge-discharge chronopotentiometry (CHP) techniques. A variety of factors on the hydrogen storage capacity, such as current density, surface area of the copper foam, and the influence of repeated hydrogen adsorption-desorption cycles were assessed. The electrochemical results indicated that the SnFe2O4@MWCNTS has high capability and excellent reversibility compared to SnFe2O4 nanoparticles (NPs) for hydrogen storage. The highest hydrogen discharge capability of SnFe2O4@MWCNTs was achieved ∼ 365 mAh/g during the 1st cycle, and the storage capacity enhanced to ∼ 2350 mAh/g at the end of 20 cycles using a current of 2 mA. Consequently, the SnFe2O4@MWCNTS illustrated great capacity as a prospective active material for hydrogen storage systems.

5.
Mikrochim Acta ; 190(5): 184, 2023 04 18.
Article in English | MEDLINE | ID: mdl-37069457

ABSTRACT

In recent years, various types of radiosensitizers have been developed to address the challenges of cancer radiotherapy. Here, platinum-functionalized oxygenated single-walled carbon nanotubes (O-SWCNTs-Pt) coated with folic acid (FA) and bovine serum albumin (BSA) (O-SWCNTs-Pt-BSA-FA) were synthesized, characterized, and used as radiosensitizers to improve the therapeutic efficacy of X-rays in a mouse model of breast cancer (4T1) in vitro. The nanosensitizer was characterized by different techniques, such as transmission electron microscopy (TEM), selected area electron diffraction (SAED), dynamic light scattering (DLS), zeta potential, X-ray diffraction (XRD), ultraviolet-visible (UV-visible), and Fourier transform infrared (FTIR) spectrometry. The evaluation of cell viability with nanocarriers O-SWCNTs-BSA, O-SWCNTs-Pt-BSA, Pt-BSA-FA, and O-SWCNTs-Pt-BSA-FA is reported at the concentrations of 10, 30, and 90 µg/mL by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay in the presence and absence of X-rays at 4 and 8 Gy. The results showed that administration of O-SWCNTs-BSA, O-SWCNTs-Pt-BSA, Pt-BSA-FA, and O-SWCNTs-Pt-BSA-FA + 8 Gy at a concentration of 90 µg/mL reduced survival by 75.31, 65.32, 67.35, and 60.35%, respectively. O-SWCNTs-Pt-BSA-FA has a hydrodynamic size of 88.57 nm and a surface charge of -29 mV, which indicates special stability. Compared with O-SWCNTs-BSA, O-SWCNTs-Pt-BSA, and Pt-BSA-FA, it has very strong cell-killing activity in the 4T1 cell line. It is also noteworthy that SWCNTs can act as a controlled release and delivery system for PtNPs due to their unique properties and easy penetration into biological membranes. As a result, the  new nanosensitizer may play a role in cancer treatment in conjunction with radiotherapy technology. Graphical abstract.


Subject(s)
Metal Nanoparticles , Nanotubes, Carbon , Neoplasms , Animals , Mice , Nanotubes, Carbon/chemistry , Platinum , X-Rays , Cell Line , Serum Albumin, Bovine/chemistry , Neoplasms/drug therapy
6.
Environ Sci Pollut Res Int ; 30(2): 2740-2753, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35939191

ABSTRACT

In this research, a biodegradable starch/Fe3O4/TiO2 bio-nanocomposites (SFT) were produced using different nano Fe3O4/TiO2 (FT) (3, 5, and 10 (wt% dry based)) contents. Mechanical properties, visual properties, moisture-sensitive parameters, magnetic properties, and physical properties of the film specimens were investigated. Photodegradability of film specimens was also evaluated under UV-A irradiation. The FT content increased the hydrophobicity of the film specimens. Tensile strength (TS) of SFT films was increased by increasing FT up to 3%. Elongation at break (EB) and tensile energy to break (TEB) were decreased by adding FT content up to 3% simultaneously. The film specimens' water vapor permeability (WVP) was decreased with increasing FT content. The intrinsic viscosity of SFT was decreased by increasing FT content. It confirms the enhancement of photodegradability of the specimens by increasing FT content. It seems the compatibility of FT with biopolymer has had great effects on these properties. Use of FT-based nanocomposites is an appropriate approach to developing magnetic-recyclable and photodegradable packaging materials.


Subject(s)
Nanocomposites , Starch , Feasibility Studies , Food Packaging , Permeability , Tensile Strength , Nanocomposites/radiation effects , Steam
7.
RSC Adv ; 12(8): 4813-4827, 2022 Feb 03.
Article in English | MEDLINE | ID: mdl-35425511

ABSTRACT

A new mononuclear tungsten coordination compound, [WO2L(CH3OH)] (1), was synthesized by the reaction of WCl6 and H2L (H2L = (E)-4-amino-N'-(5-bromo-2-hydroxybenzylidene)benzohydrazide) in methanol. Both the H2L and compound 1 were characterized by elemental analysis and UV-Vis, FT-IR and NMR spectroscopic methods. The molecular structure of compound 1 was also determined by single crystal X-ray analysis which confirmed the compound is a mononuclear coordination compound of cis-dioxidotungsten(vi) containing a free amine functionality on the ligand. Compound 1 was supported on propionyl chloride-functionalized silica gel by amidification reaction to obtain a heterogeneous catalyst. The obtained heterogeneous catalyst was characterized by FT-IR spectroscopy, thermal gravimetric analysis (TGA), diffuse-reflectance spectroscopy (DRS), X-ray diffraction analysis (XRD), energy-dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) and its catalytic activity was investigated in the epoxidation of olefins with hydrogen peroxide under solvent free conditions. The catalyst was successfully recovered several times and the recovered catalyst was also characterized by various methods including FT-IR, DRS, TGA, SEM and EDX analyses. The results indicated this heterogeneous catalytic system is an effective and selective catalyst for epoxidation of olefins and can be reused several times without significant change in its catalytic activity.

8.
Environ Technol ; 41(10): 1219-1231, 2020 Apr.
Article in English | MEDLINE | ID: mdl-30226797

ABSTRACT

To preparation of ultra-clean gasoline fuel, a new amphiphilic nanocomposite (TBA-SiWMn@PVA) has been successfully synthesized by supporting sandwich-type silicotungstate polyoxometalate ((n-C4H9)4N)7H5Si2W18Mn4O68 (TBA-SiWMn) on polyvinylalcohol (PVA) as an efficient catalyst for catalytic oxidative desulphurization (CODS) of gasoline. The synthesized materials were characterized by means of elemental analysis, 113Mn NMR, 29Si NMR, XRD, SEM, FT-IR and UV-vis techniques. The catalytic activity of TBA-SiWMn@PVA nanocomposite was tested on real gasoline in the presence of CH3COOH/H2O2 as an oxidant and the results were compared with model sulphur compounds at the same conditions. The TBA-SiWMn@PVA nanocomposite was shown excellent catalytic performance and recoverability for ODS of gasoline with high yield. The effects of the reaction time, reaction temperature, dosage and nature of catalyst were investigated. The reaction mechanism and the kinetic parameters of sulphur compounds oxidation were also discussed. The probable mechanism was proposed via the electrophilic mechanism through the formation of a peroxometalate intermediate complex with phase transfer properties. Results were indicated that the kinetics of sulphur oxidation fitted the pseudo-first-order kinetic model. After 5 oxidation runs, the heterogeneous nanocatalyst was separated and recovered easily.


Subject(s)
Gasoline , Nanocomposites , Hydrogen Peroxide , Oxidative Stress , Polymers , Spectroscopy, Fourier Transform Infrared , Tungsten Compounds
9.
Colloids Surf B Biointerfaces ; 123: 648-56, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-25456984

ABSTRACT

N,N'-bis[(E)-(1-pyridyl) methylidene]-1,3-propanediamine (PMPDA) self-assembled monolayer (SAM) was covalently prepared on a glassy carbon electrode (GCE). The electrode surface modification was characterized by scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) techniques. Then GC-PMPDA SAM modified electrode was used to investigate the electrochemical behavior of hydroxychloroquine (HQ) using CV, double potential step chronocoulometry and linear sweep voltammetry (LSV) techniques. Using these techniques, the diffusion coefficient (D), electron transfer coefficient (α) and exchanging current density (j0) for HQ were calculated. Furthermore the modified electrode was applied as a high sensitive biosensor for determination of HQ in the presence of acetaminophen (AC). The GC-PMPDA SAM modified electrode provides two linear responses for HQ in the presence of AC in the concentration ranges from 0.09 to 10.21 µM and 10.21 to 98.29 µM by differential pulse voltammetry (DPV). The detection limit (three times the signal blank/slope) was 4.65 nM. Finally the modified electrode was satisfactorily used for determining of HQ in human body fluids.


Subject(s)
Acetaminophen/chemistry , Carbon/chemistry , Electrodes , Hydroxychloroquine/chemistry , Nanostructures/chemistry , Electrochemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...