Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Pediatr Int ; 64(1): e15225, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35727867

ABSTRACT

BACKGROUND: Home mechanical ventilation (HMV) prolongs survival in patients with Duchenne muscular dystrophy (DMD) until ±35 years of age. This study evaluates the implementation of a HMV pilot project in children with DMD in Ukraine. METHODS: Children with DMD were invited to Kirovograd Regional Children's Clinical Hospital, Kropyvnytskyi, Ukraine, for 5 days' training with non-invasive ventilation. Donated equipment comprised second-hand Covidien PB560 ventilators from Belgium. Due to the absence of carbon dioxide pressure and pulse oximetry monitoring, indications for HMV included sleep-related symptoms, restrictive lung function test, loss of ambulation for more than 1 year, or age greater than 17 years. Master class lectures on HMV were conducted for Ukrainian doctors in conjunction with patient training. RESULTS: Twelve Ukrainian physicians took part in face-to-face master classes and 50 Ukrainian physicians participated in online master classes. Simultaneously, eight Duchenne inpatients, mean age 15.4 (SD: 1.8) years and body mass index 25.8 (SD: 4.0), were included in the study. All patients chose nasal masks and volume-pressure-assisted control mode. After 6 weeks, one patient stopped HMV, two others used HMV partially during sleep, and 5/8 used nocturnal HMV increasingly with few complaints. Follow up via phone call was organized after hospitalization. CONCLUSIONS: Implementation of HMV is feasible in DMD inpatients in Ukraine. In the short term, the Ukrainian parliament should recognize official centers for HMV, and define the funding policy of equipment for HMV, and its maintenance. Local distributors should deliver equipment for HMV and devices for monitoring carbon dioxide pressure and pulse oximetry in specialized centers for HMV.


Subject(s)
Muscular Dystrophy, Duchenne , Respiration, Artificial , Adolescent , Carbon Dioxide , Child , Humans , Muscular Dystrophy, Duchenne/therapy , Pilot Projects , Retrospective Studies , Ukraine
2.
Nat Commun ; 13(1): 2306, 2022 04 28.
Article in English | MEDLINE | ID: mdl-35484142

ABSTRACT

Missense variants in RNA-binding proteins (RBPs) underlie a spectrum of disease phenotypes, including amyotrophic lateral sclerosis, frontotemporal dementia, and inclusion body myopathy. Here, we present ten independent families with a severe, progressive muscular dystrophy, reminiscent of oculopharyngeal muscular dystrophy (OPMD) but of much earlier onset, caused by heterozygous frameshift variants in the RBP hnRNPA2/B1. All disease-causing frameshift mutations abolish the native stop codon and extend the reading frame, creating novel transcripts that escape nonsense-mediated decay and are translated to produce hnRNPA2/B1 protein with the same neomorphic C-terminal sequence. In contrast to previously reported disease-causing missense variants in HNRNPA2B1, these frameshift variants do not increase the propensity of hnRNPA2 protein to fibrillize. Rather, the frameshift variants have reduced affinity for the nuclear import receptor karyopherin ß2, resulting in cytoplasmic accumulation of hnRNPA2 protein in cells and in animal models that recapitulate the human pathology. Thus, we expand the phenotypes associated with HNRNPA2B1 to include an early-onset form of OPMD caused by frameshift variants that alter its nucleocytoplasmic transport dynamics.


Subject(s)
Amyotrophic Lateral Sclerosis , Heterogeneous-Nuclear Ribonucleoprotein Group A-B/genetics , Muscular Dystrophy, Oculopharyngeal , Amyotrophic Lateral Sclerosis/genetics , Animals , Frameshift Mutation , Heterogeneous-Nuclear Ribonucleoprotein Group A-B/metabolism , Heterozygote , Humans , Muscular Dystrophy, Oculopharyngeal/genetics
3.
Neurol Genet ; 7(1): e536, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33376799

ABSTRACT

OBJECTIVE: Genetic diagnosis and mutation identification are now compulsory for Duchenne (DMD) and Becker muscular dystrophies (BMD), which are due to dystrophin (DMD) gene mutations, either for disease prevention or personalized therapies. To evaluate the ethnic-related genetic assortments of DMD mutations, which may impact on DMD genetic diagnosis pipelines, we studied 328 patients with DMD and BMD from non-European countries. METHODS: We performed a full DMD mutation detection in 328 patients from 10 Eastern European countries (Poland, Hungary, Lithuania, Romania, Serbia, Croatia, Bosnia, Bulgaria, Ukraine, and Russia) and 2 non-European countries (Cyprus and Algeria). We used both conventional methods (multiplex ligation-dependent probe amplification [MLPA] followed by gene-specific sequencing) and whole-exome sequencing (WES) as a pivotal study ran in 28 patients where DMD mutations were already identified by standard techniques. WES output was also interrogated for DMD gene modifiers. RESULTS: We identified DMD gene mutations in 222 male patients. We identified a remarkable allele heterogeneity among different populations with a mutation landscape often country specific. We also showed that WES is effective for picking up all DMD deletions and small mutations and its adoption could allow a detection rate close to 90% of all occurring mutations. Gene modifiers haplotypes were identified with some ethnic-specific configurations. CONCLUSIONS: Our data provide unreported mutation landscapes in different countries, suggesting that ethnicity may orient genetic diagnosis flowchart, which can be adjusted depending on the mutation type frequency, with impact in drug eligibility.

5.
Orphanet J Rare Dis ; 13(1): 155, 2018 09 05.
Article in English | MEDLINE | ID: mdl-30185236

ABSTRACT

BACKGROUND: Myotonic Dystrophy is the most common form of muscular dystrophy in adults, affecting an estimated 10 per 100,000 people. It is a multisystemic disorder affecting multiple generations with increasing severity. There are currently no licenced therapies to reverse, slow down or cure its symptoms. In 2009 TREAT-NMD (a global alliance with the mission of improving trial readiness for neuromuscular diseases) and the Marigold Foundation held a workshop of key opinion leaders to agree a minimal dataset for patient registries in myotonic dystrophy. Eight years after this workshop, we surveyed 22 registries collecting information on myotonic dystrophy patients to assess the proliferation and utility the dataset agreed in 2009. These registries represent over 10,000 myotonic dystrophy patients worldwide (Europe, North America, Asia and Oceania). RESULTS: The registries use a variety of data collection methods (e.g. online patient surveys or clinician led) and have a variety of budgets (from being run by volunteers to annual budgets over €200,000). All registries collect at least some of the originally agreed data items, and a number of additional items have been suggested in particular items on cognitive impact. CONCLUSIONS: The community should consider how to maximise this collective resource in future therapeutic programmes.


Subject(s)
Myotonic Dystrophy , Rare Diseases , Registries , Clinical Trials as Topic , Education , Humans
6.
Hum Mutat ; 36(4): 395-402, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25604253

ABSTRACT

Analyzing the type and frequency of patient-specific mutations that give rise to Duchenne muscular dystrophy (DMD) is an invaluable tool for diagnostics, basic scientific research, trial planning, and improved clinical care. Locus-specific databases allow for the collection, organization, storage, and analysis of genetic variants of disease. Here, we describe the development and analysis of the TREAT-NMD DMD Global database (http://umd.be/TREAT_DMD/). We analyzed genetic data for 7,149 DMD mutations held within the database. A total of 5,682 large mutations were observed (80% of total mutations), of which 4,894 (86%) were deletions (1 exon or larger) and 784 (14%) were duplications (1 exon or larger). There were 1,445 small mutations (smaller than 1 exon, 20% of all mutations), of which 358 (25%) were small deletions and 132 (9%) small insertions and 199 (14%) affected the splice sites. Point mutations totalled 756 (52% of small mutations) with 726 (50%) nonsense mutations and 30 (2%) missense mutations. Finally, 22 (0.3%) mid-intronic mutations were observed. In addition, mutations were identified within the database that would potentially benefit from novel genetic therapies for DMD including stop codon read-through therapies (10% of total mutations) and exon skipping therapy (80% of deletions and 55% of total mutations).


Subject(s)
Databases, Genetic , Dystrophin/genetics , Muscular Dystrophy, Duchenne/genetics , Mutation , Humans , Registries
SELECTION OF CITATIONS
SEARCH DETAIL
...