Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Psychol ; 14: 1130596, 2023.
Article in English | MEDLINE | ID: mdl-37388649

ABSTRACT

Plastic pollution is both a societal and environmental problem and citizen science has shown to be a useful tool to engage both the public and professionals in addressing it. However, knowledge on the educational and behavioral impacts of citizen science projects focusing on marine litter remains limited. Our preregistered study investigates the impact of the citizen science project Citizen Observation of Local Litter in coastal ECosysTems (COLLECT) on the participants' ocean literacy, pro-environmental intentions and attitudes, well-being, and nature connectedness, using a pretest-posttest design. A total of 410 secondary school students from seven countries, in Africa (Benin, Cabo Verde, Côte d'Ivoire, Ghana, Morocco, Nigeria) and Asia (Malaysia) were trained to sample plastics on sandy beaches and to analyze their collection in the classroom. Non-parametric statistical tests (n = 239 matched participants) demonstrate that the COLLECT project positively impacted ocean literacy (i.e., awareness and knowledge of marine litter, self-reported litter-reducing behaviors, attitudes towards beach litter removal). The COLLECT project also led to higher pro-environmental behavioral intentions for students in Benin and Ghana (implying a positive spillover effect) and higher well-being and nature connectedness for students in Benin. Results are interpreted in consideration of a high baseline in awareness and attitudes towards marine litter, a low internal consistency of pro-environmental attitudes, the cultural context of the participating countries, and the unique settings of the project's implementation. Our study highlights the benefits and challenges of understanding how citizen science impacts the perceptions and behaviors towards marine litter in youth from the respective regions.

2.
Chemosphere ; 310: 136790, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36220430

ABSTRACT

Membrane distillation (MD) is a thermally driven technology applied in desalination and water reuse with utilisation of sustainable energy. However, algal organic matter (AOM) could foul membrane critically and plague MD's long-term operational stability. In this study, the soluble extracellular polymeric substance (sEPS) and intracellular organic matter with bound extracellular polymeric substance (IOM + bEPS) of two algal species (Amphora coffeaeformis and Navicula incerta) were exposed to 60 °C, 70 °C and 80 °C for 8 h with polypropylene hydrophobic membrane, simulating heated AOMs contacted with membrane inside MD unit, to study the temperature effect on membrane fouling. The dissolved carbohydrate and protein in the sEPS and IOM + bEPS samples generally increased after being heated. Heating caused cell lysis and the release and dissolution of carbohydrate and protein from sEPS, IOM and bEPS into water. As heating temperature increased, the carbohydrate release from the AOM usually increased. The contact angle of membrane contacted with sEPS and IOM + bEPS reduced significantly after heat treatment. The reduction in IOM + bEPS was larger than sEPS, in line with SEM analysis, indicating membrane surfaces and pores with IOM + bEPS fouled more severely than sEPS. It is due to higher hydrophobicity in IOM + bEPS causing adherence to membrane and presence of amphiphiles. High protein, lipid, and saturated fats proportions also cause severe fouling. SEM-EDX analysis indicated presence of O, Na, Cl and Mg elements, pointing to carbohydrate and lipids, and salt trapped in foulants. AOM heating and composition had direct effect to the membrane integrity, dictating severity of fouling in MD operations.


Subject(s)
Extracellular Polymeric Substance Matrix , Water Purification , Temperature , Distillation , Membranes, Artificial , Ions , Carbohydrates , Water
3.
PeerJ ; 10: e13181, 2022.
Article in English | MEDLINE | ID: mdl-35462757

ABSTRACT

Over the past decade, concerns over microplastic pollution in the marine ecosystem has increasingly gained more attention, but research investigating the ingestion of microplastics by marine fish in Malaysia is still regrettably lacking. This study investigated the microplastic presence, abundance, and morphological types within the guts of four species of commercial marine fish (Atule mate, Crenimugil seheli, Sardinella fimbriata and Rastrelliger brachysoma) caught in seawater off the coast of Malaysia's Northwest Peninsular. A total of 72 individual commercial marine fish guts from four species (fish per species n = 18) were examined. Remarkably, this study found that 100% of the samples contained microplastics. A total number of 432 microplastics (size < 5 mm) from the four species were found in the excised marine fish guts. The most common type of microplastic discovered was fragment, which accounted for 49.5% of all microplastics present. The gut microplastic content differed between species. Sardinella fimbriata recorded the greatest amount of microplastic ingestion, with an average microplastic count of 6.5 (±4.3) items per individual fish. However, there were no statistically significant differences found when comparing study species and different locations. SEM-EDX analysis confirmed the presence of microplastic particles by identifying the chemical elements found in the samples. Since the four studied species of commercial marine fish are popular protein sources in Malaysians' daily diet, this study suggests potential microplastic exposure to humans via contaminated fish consumption in Malaysia, which was previously unknown. Based on previous scientific evidence, this study also demonstrates the high probability of microplastic ingestion in marine fish in the Malaysian seawater, which could have an adverse effect on fish health as well as marine biota.


Subject(s)
Microplastics , Water Pollutants, Chemical , Animals , Humans , Microplastics/metabolism , Plastics/analysis , Environmental Monitoring , Ecosystem , Malaysia , Water Pollutants, Chemical/analysis , Fishes/metabolism , Eating , Seawater/chemistry
4.
J Zool Syst Evol Res ; 57(1): 91-112, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30828135

ABSTRACT

This study demonstrates for the first time the presence of marine-associated mites in the Andaman Sea and Strait of Malacca and reveals a relatively high diversity of these taxa with six species from two different families: Selenoribatidae and Fortuyniidae. Indopacifica, a new genus of Selenoribatidae, is described from Thailand and Malaysia, with two new species, Indopacifica pantai n. sp. and Indopacifica parva n. sp. The genus is characterized by the unique combination of following characters: lacking lamellar ridges, incomplete dorsosejugal suture, fourteen pairs of notogastral setae, and presence of epimeral foveae. A phylogenetic reconstruction based on 18S ribosomal RNA sequences clearly confirms the distinctness of the new genus Indopacifica and places it close to the genus Rhizophobates. The lack of molecular genetic data of possible relatives impedes a clear assessment, and hence, we emphasize the need for further combined approaches using morphological and molecular genetic sequence data. All species show wide distribution areas within this geographic region suggesting that these taxa are good dispersers despite their minute size and wingless body. Molecular genetic data demonstrate recent gene flow between far distant populations of I. pantai n. sp. from the coasts of Thailand and two islands of Malaysia and hence confirm this assumption. The seasonally changing surface currents within this geographic area may favor hydrochorous dispersal and hence genetic exchange. Nevertheless, morphometric data show a slight trend to morphological divergence among the studied populations, whereas this variation is suggested to be a result of genetic drift but also of habitat differences in one population of Alismobates pseudoreticulatus.

5.
Mar Pollut Bull ; 100(1): 311-320, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26323864

ABSTRACT

Peninsular Malaysia has gone through fast development during recent decades resulting in the release of large amounts of petroleum and its products into the environment. Aliphatic hydrocarbons are one of the major components of petroleum. Surface sediment samples were collected from five rivers along the west coast of Peninsular Malaysia and analyzed for aliphatic hydrocarbons. The total concentrations of C10 to C36 n-alkanes ranged from 27,945 to 254,463ng·g(-1)dry weight (dw). Evaluation of various n-alkane indices such as carbon preference index (CPI; 0.35 to 3.10) and average chain length (ACL; 26.74 to 29.23) of C25 to C33 n-alkanes indicated a predominance of petrogenic source n-alkanes in the lower parts of the Rivers, while biogenic origin n-alkanes from vascular plants are more predominant in the upper parts, especially in less polluted areas. Petrogenic sources of n-alkanes are predominantly heavy and degraded oil versus fresh oil inputs.


Subject(s)
Geologic Sediments/analysis , Hydrocarbons/analysis , Water Pollutants, Chemical/analysis , Alkanes/analysis , Alkanes/chemistry , Carbon/analysis , Ecosystem , Hydrocarbons/chemistry , Malaysia , Petroleum , Rivers , Wetlands
6.
Trop Life Sci Res ; 25(1): 1-12, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25210584

ABSTRACT

THE DIVERSITIES OF MANGROVE TREES AND OF THEIR ASSOCIATED GASTROPODS WERE ASSESSED FOR TWO MANGROVE REGIONS ON THE WEST COAST OF PENINSULAR MALAYSIA: Langkawi Island and Sungai Merbok. The mangrove area sampled on Langkawi Island was recently logged and replanted, whereas the area sampled in Sungai Merbok was part of a protected nature reserve. Mangrove and gastropod diversity were assessed in four 50 m(2) (10 × 5 m) sites per region. The species richness (S), Shannon Index (H') and Evenness Index (J') were calculated for each site, and the mean S, H' and J' values were calculated for each region. We report low tree and gastropod S, H' and J' values in all sites from both regions. For Langkawi Island, the mean S, H' and J' values for mangrove trees were S = 2.00±0, H' = 0.44±0.17 and J' = 0.44±0.17; the mean S, H' and J' values for gastropods were S = 4.00±1.63, H' = 0.96±0.41 and J' = 0.49±0.06. In Sungai Merbok, the mean S, H' and J' values for mangrove trees were S = 1.33±0.58, H' = 0.22±0.39 and J' = 0.22 ±0.39; the mean S, H' and J' values for gastropods were S = 4.75±2.22, H' = 1.23±0.63 and J' = 0.55±0.12. This study emphasises the need for baseline biodiversity measures to be established in mangrove ecosystems to track the impacts of anthropogenic disturbances and to inform management and restoration efforts.

SELECTION OF CITATIONS
SEARCH DETAIL
...