Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Cell Rep ; 41(3): 775-798, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34401950

ABSTRACT

KEY MESSAGE: Plant heat stress response is a multi-factorial trait that is precisely regulated by the complex web of transcription factors from various families that modulate heat stress responsive gene expression. Global warming due to climate change affects plant growth and development throughout its life cycle. Adds to this, the frequent occurrence of heat waves is drastically reducing the global crop yield. Molecular plant scientists can help crop breeders by providing genetic markers associated with stress resistance. Plant heat stress response (HSR), however, is a multi-factorial trait and using a single stress resistance trait might not be ideal to develop thermotolerant crops. Transcription factors participate in regulation of plant biological processes and environmental stress responses. Recent studies have revealed that plant HSR is precisely regulated by the complex web of transcription factors from various families. These transcription factors enhance plant heat stress tolerance by regulating the expression level of several stress-responsive genes independently or in cross talk with different other transcription factors. This review explores how signaling pathways triggered by heat stress are regulated by multiple transcription factor families. To our knowledge, we for the first time analyze the role of major transcription factor families in plant HSR along with their regulatory mechanisms. In the end, we will also discuss the potential of emerging technologies to improve thermotolerance in plants.


Subject(s)
Heat-Shock Response , Thermotolerance , Crops, Agricultural/physiology , Gene Expression Regulation, Plant , Heat-Shock Response/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics , Thermotolerance/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
2.
Microsc Res Tech ; 84(2): 192-201, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33332709

ABSTRACT

The tunable cobalt oxide nanoparticles (CoONPs) are produced due to the phytochemicals present in Rhamnus virgata (RhV) leaf extract which functions as reducing and stabilization agents. The synthesis of CoONPs was confirmed using different analytical techniques: UV-Vis spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), dynamics light scatterings (DLS), Fourier-transform infrared spectroscopy (FTIR), energy dispersive X-ray, and Raman spectroscopy analyses. Furthermore, multiple biological activities were performed. Significant antifungal and antibacterial potentials have been reported. The in vitro cytotoxic assays of CoONPs revealed strong anticancer activity against human hepatoma HUH-7 (IC50 : 33.25 µg/ml) and hepatocellular carcinoma HepG2 (IC50 : 11.62 µg/ml) cancer cells. Dose-dependent cytotoxicity potency was confirmed against Leishmania tropica (KMH23 ); amastigotes (IC50 : 58.63 µg/ml) and promastigotes (IC50 : 32.64 µg/ml). The biocompatibility assay using red blood cells (RBCs; IC50 : 4,636 µg/ml) has confirmed the bio-safe nature of CoONPs. On the whole, results revealed nontoxic nature of RhV-CoONPs with promising biological potentials.


Subject(s)
Antineoplastic Agents/pharmacology , Antiparasitic Agents/pharmacology , Cobalt/chemistry , Metal Nanoparticles/chemistry , Oxides/chemistry , Plant Extracts/chemistry , Plant Leaves/chemistry , Rhamnus/chemistry , Cell Line, Tumor , Humans , Leishmania tropica/drug effects , Spectrum Analysis , X-Ray Diffraction
3.
Biomedicines ; 8(5)2020 May 12.
Article in English | MEDLINE | ID: mdl-32408532

ABSTRACT

Chemically nickel oxide nanoparticles (NiONPs) involve the synthesis of toxic products, which restrict their biological applications. Hence, we developed a simple, eco-friendly, and cost-efficient green chemistry method for the fabrication of NiONPs using fresh leaf broth of Rhamnus triquetra (RT). The RT leaves broth was used as a strong reducing, capping, and stabilizing agent in the formation of RT-NiONPs. The color change in solution from brown to greenish black suggests the fabrication of RT-NiONPs which was further confirmed by absorption band at 333 nm. The synthesis and different physicochemical properties of RT-NiONPs were investigated using different analytical techniques such as UV-Vis (ultraviolet-visible spectroscopy), XRD (X-ray powder diffraction), FT-IR (Fourier-transform infrared spectroscopy), SEM (scanning electron microscopy), TEM (transmission electron microscopy), EDS (energy-dispersive X-ray spectroscopy), DLS (dynamic light scattering) and Raman. Further, RT-NiONPs were subjected to different in vitro biological activities and revealed distinctive biosafe and biocompatibility potentials using erythrocytes and macrophages. RT-NiONPs exhibited potential anticancer activity against liver cancer cell lines HUH7 (IC50: 11.3 µg/mL) and HepG2 (IC50: 20.73 µg/mL). Cytotoxicity potential was confirmed using Leishmanial parasites promastigotes (IC50: 27.32 µg/mL) and amastigotes (IC50: 37.4 µg/mL). RT-NiONPs are capable of rendering significant antimicrobial efficacy using various bacterial and fungal strains. NiONPs determined potent radical scavenging and moderate enzyme inhibition potencies. Overall, this study suggested that RT-NiONPs can be an attractive and eco-friendly candidate. In conclusion, current study showed potential in vitro biological activities and further necessitate different in vivo studies in various animal models to develop leads for new drugs to treat several chronic diseases.

SELECTION OF CITATIONS
SEARCH DETAIL
...