Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 22027, 2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36539457

ABSTRACT

Magnetoresistance measurements in amorphous NbN nanowires show that transport current affects their negative magnetoresistance (nMR) in a manner qualitatively similar to temperature. In particular, the current suppresses the nMR and, beyond a certain level it eliminates the effect altogether. As the temperature dependence of the nMR effect is more pronounced at low currents, similarly the current dependence of the effect is more pronounced at low temperatures. These results are discussed in terms of the phenomenological model which attributes the nMR to the interplay between the resistance originating from the rate of phase slips via the Josephson relation and the Ohmic contribution from quasiparticles charge imbalance that accompany fluctuations of the order parameter in the nanowire.

2.
Nat Commun ; 11(1): 5697, 2020 11 10.
Article in English | MEDLINE | ID: mdl-33173061

ABSTRACT

Studies of nanoscale superconducting structures have revealed various physical phenomena and led to the development of a wide range of applications. Most of these studies concentrated on one- and two-dimensional structures due to the lack of approaches for creation of fully engineered three-dimensional (3D) nanostructures. Here, we present a 'bottom-up' method to create 3D superconducting nanostructures with prescribed multiscale organization using DNA-based self-assembly methods. We assemble 3D DNA superlattices from octahedral DNA frames with incorporated nanoparticles, through connecting frames at their vertices, which result in cubic superlattices with a 48 nm unit cell. The superconductive superlattice is formed by converting a DNA superlattice first into highly-structured 3D silica scaffold, to turn it from a soft and liquid-environment dependent macromolecular construction into a solid structure, following by its coating with superconducting niobium (Nb). Through low-temperature electrical characterization we demonstrate that this process creates 3D arrays of Josephson junctions. This approach may be utilized in development of a variety of applications such as 3D Superconducting Quantum interference Devices (SQUIDs) for measurement of the magnetic field vector, highly sensitive Superconducting Quantum Interference Filters (SQIFs), and parametric amplifiers for quantum information systems.


Subject(s)
DNA/chemistry , Nanostructures/chemistry , Superconductivity , Information Systems , Magnetic Fields , Metal Nanoparticles/chemistry , Niobium , Quantum Theory , Silicon Dioxide
3.
Nano Lett ; 18(12): 7851-7855, 2018 12 12.
Article in English | MEDLINE | ID: mdl-30408961

ABSTRACT

Magnetoresistance measurements in a granular Nb nanoring reveal current-induced crossover between two distinct quantum coherence effects. At low bias currents, Cooper-pair coherence is manifested by Little-Parks oscillations with flux periodicity of h/2 e. At high bias currents, magnetoresistance oscillations with flux periods of h/ e are observed and interpreted as Aharonov-Bohm oscillations, reflecting the phase coherence of individual quasi-particles. The model explaining these data views the ring as a chain of superconducting grains weakly coupled by tunnel junctions. Low bias currents allow coherent tunneling of Cooper pairs between the grains. Increasing the current above the critical current of all the junctions creates a quasi-particles conduction channel along the ring, allowing for quantum interference of quasi-particles.

4.
Sci Rep ; 6: 28320, 2016 06 20.
Article in English | MEDLINE | ID: mdl-27321733

ABSTRACT

The critical temperature in a superconducting ring changes periodically with the magnetic flux threading it, giving rise to the well-known Little-Parks magnetoresistance oscillations. Periodic changes of the critical current in a superconducting quantum interference device (SQUID), consisting of two Josephson junctions in a ring, lead to a different type of magnetoresistance oscillations utilized in detecting extremely small changes in magnetic fields. Here we demonstrate current-induced switching between Little-Parks and SQUID magnetoresistance oscillations in a superconducting nano-ring without Josephson junctions. Our measurements in Nb nano-rings show that as the bias current increases, the parabolic Little-Parks magnetoresistance oscillations become sinusoidal and eventually transform into oscillations typical of a SQUID. We associate this phenomenon with the flux-induced non-uniformity of the order parameter along a superconducting nano-ring, arising from the superconducting leads ('arms') attached to it. Current enhanced phase slip rates at the points with minimal order parameter create effective Josephson junctions in the ring, switching it into a SQUID.

5.
Nat Nanotechnol ; 5(7): 516-9, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20543834

ABSTRACT

Measurements on nanoscale structures constructed from high-temperature superconductors are expected to shed light on the origin of superconductivity in these materials. To date, loops made from these compounds have had sizes of the order of hundreds of nanometres(8-11). Here, we report the results of measurements on loops of La(1.84)Sr(0.16)CuO(4), a high-temperature superconductor that loses its resistance to electric currents when cooled below approximately 38 K, with dimensions down to tens of nanometres. We observe oscillations in the resistance of the loops as a function of the magnetic flux through the loops. The oscillations have a period of h/2e, and their amplitude is much larger than the amplitude of the resistance oscillations expected from the Little-Parks effect. Moreover, unlike Little-Parks oscillations, which are caused by periodic changes in the superconducting transition temperature, the oscillations we observe are caused by periodic changes in the interaction between thermally excited moving vortices and the oscillating persistent current induced in the loops. However, despite the enhanced amplitude of these oscillations, we have not detected oscillations with a period of h/e, as recently predicted for nanoscale loops of superconductors with d-wave symmetry, or with a period of h/4e, as predicted for superconductors that exhibit stripes.

SELECTION OF CITATIONS
SEARCH DETAIL
...